Representing Cyclic Structures as Nested Datatypes

Makoto Hamana

Department of Computer Science, Gunma University, Japan

	Joint work with	
Neil Ghani	Tarmo Uustalu	Varmo Vene
U. Nottingham	U. Tallinn	U. Tartu

ToPS, 2006, May

Motivation

\triangleright Algebraic datatypes provide a nice way to represent tree-like structures

Motivation

\triangleright Algebraic datatypes provide a nice way to represent tree-like structures
\triangleright Lazy languages, e.g. Haskell, allow to build also cyclic structures

$$
\text { cycle = } 1 \text { : } 2 \text { : cycle }
$$

Motivation

\triangleright Algebraic datatypes provide a nice way to represent tree-like structures
\triangleright Lazy languages, e.g. Haskell, allow to build also cyclic structures

cycle = 1 : 2 : cycle
or equivalently

```
cycle = fix (\ xs -> 1 : 2 : xs)
fix f = x where x = f x
```


Motivation

\triangleright Algebraic datatypes provide a nice way to represent tree-like structures
\triangleright Lazy languages, e.g. Haskell, allow to build also cyclic structures

cycle = 1 : 2 : cycle
or equivalently

```
cycle = fix (\ xs -> 1 : 2 : xs)
fix f = x where x = f x
```

\triangleright Allows to represent infinite structures in finite memory

Motivation

\triangleright Algebraic datatypes provide a nice way to represent tree-like structures
\triangleright Lazy languages, e.g. Haskell, allow to build also cyclic structures

cycle = 1 : 2 : cycle
or equivalently

```
cycle = fix (\ xs -> 1 : 2 : xs)
fix f = x where x = f x
```

\triangleright Allows to represent infinite structures in finite memory
\triangleright Problem: No support for manipulating cyclic structures

Problems on the Usual Approach

\triangleright No support for manipulating cyclic structures
\triangleright E.g. ... destructing the cyclic structure!

$$
\operatorname{map}(+1) \text { cycle }==>\quad[2,3,2,3,2,3,2,3, \ldots
$$

Problems on the Usual Approach

\triangleright No support for manipulating cyclic structures
\triangleright E.g. ... destructing the cyclic structure!
map (+1) cycle $==>\quad[2,3,2,3,2,3,2,3, \ldots$
\triangleright No way to distinguish cyclic / infinite structures

Problems on the Usual Approach

\triangleright No support for manipulating cyclic structures
\triangleright E.g. ... destructing the cyclic structure!
map (+1) cycle $==>\quad[2,3,2,3,2,3,2,3, \ldots$

- No way to distinguish cyclic / infinite structures
\triangleright Q. Can we represent cyclic structures inductively? i.e. by algebraic datatypes

Problems on the Usual Approach

\triangleright No support for manipulating cyclic structures
\triangleright E.g. ... destructing the cyclic structure!
map (+1) cycle $==>\quad[2,3,2,3,2,3,2,3, \ldots$
\triangleright No way to distinguish cyclic / infinite structures
\triangleright Q. Can we represent cyclic structures inductively? i.e. by algebraic datatypes
\triangleright Merit: explicitly manipulate cyclic structures either directly or using generic operations like fold

Fegaras-Sheard Approach

\triangleright Cyclic lists as Mixed-variant Datatype by Fegaras, Sheard (POPL'96):

```
data CList = Nil
    | Cons Int CList
    | Rec (CList -> CList)
```


Fegaras-Sheard Approach

\triangleright Cyclic lists as Mixed-variant Datatype by Fegaras, Sheard (POPL'96):

```
data CList = Nil
    | Cons Int CList
    | Rec (CList -> CList)
```

\triangleright Examples:

```
clist1 = Rec (\ xs -> Cons 1 (Cons 2 xs))
clist2 = Cons 1 (Rec (\ xs -> Cons 2 (Cons 3 xs)))
```


Fegaras-Sheard Approach

\triangleright Cyclic lists as Mixed-variant Datatype by Fegaras, Sheard (POPL'96):

```
data CList = Nil
```

 | Cons Int CList
 | Rec (CList -> CList)
 \triangleright Examples:
clist1 = Rec (\backslash xs -> Cons 1 (Cons 2 xs))
clist2 $=$ Cons 1 (Rec (\backslash xs -> Cons $2(C o n s 3 x s))$)
\triangleright Functions manipulating these representations must unfold Rec-structures.

```
    cmap :: (Int -> Int) -> CList -> CList
    cmap g Nil = Nil
    cmap g (Cons x xs) = Cons (g x) (cmap g xs)
    cmap g (Rec f) = cmap g (f (Rec f))
```

\triangleright Implicit axiom: Rec $f=f(\operatorname{Rec} f)$

Fegaras-Sheard Approach: Problem

```
data CList = Nil
    | Cons Int CList
    | Rec (CList -> CList)
```

\triangleright Functions manipulating cyclic lists must unwind them

Fegaras-Sheard Approach: Problem

```
data CList = Nil
    | Cons Int CList
    | Rec (CList -> CList)
```

\triangleright Functions manipulating cyclic lists must unwind them
\triangleright There is a "blackhole"

```
empty = Rec (\ xs -> xs)
```


Fegaras-Sheard Approach: Problem

```
data CList = Nil
    | Cons Int CList
    | Rec (CList -> CList)
```

\triangleright Functions manipulating cyclic lists must unwind them
\triangleright There is a "blackhole"

```
empty = Rec (\ xs -> xs)
```

\triangleright The representation is not unique:

```
clist1 = Rec (\ xs -> Cons 1 (Cons 2 xs))
clist1' = Rec (\ xs -> Rec (\ ys ->
    Cons 1 (Cons 2 (Rec (\ zs -> xs)))))
```


Fegaras-Sheard Approach: Problem

```
data CList = Nil
    | Cons Int CList
    | Rec (CList -> CList)
```

\triangleright Functions manipulating cyclic lists must unwind them
\triangleright There is a "blackhole"

```
empty = Rec (\ xs -> xs)
```

\triangleright The representation is not unique:

```
clist1 = Rec (\ xs -> Cons 1 (Cons 2 xs))
clist1' = Rec (\ xs -> Rec (\ ys ->
    Cons 1 (Cons 2 (Rec (\ zs -> xs)))))
```

\triangleright The semantic category has to be algebraically compact (e.g. CPO) for mixed-variant types to make semantic sense.

$$
L \cong \underset{5}{1}+\underset{\mathbb{Z}}{\mathbb{Z}} L+(L \rightarrow L)
$$

Our Analysis

```
data CList = Nil
    | Cons Int CList
    | Rec (CList -> CList)
```

\triangleright The same problem has already appeared in "Higher-Order Abstract Syntax" (HOAS)
\triangleright Induction on function space?

Our Analysis

```
data CList = Nil
    | Cons Int CList
    | Rec (CList -> CList)
```

\triangleright The same problem has already appeared in "Higher-Order Abstract Syntax" (HOAS)
\triangleright Induction on function space?

- The same solution was proposed in FP and in semantics

Bird and Paterson: De Bruijn Notation as a Nested Datatype, JFP'99
Fiore,Plotkin and Turi: Abstract Syntax and Variable Binding, LICS'99

Our Analysis

```
data CList = Nil
    | Cons Int CList
    | Rec (CList -> CList)
```

\triangleright The same problem has already appeared in "Higher-Order Abstract Syntax" (HOAS)
\triangleright Induction on function space?

- The same solution was proposed in FP and in semantics

Bird and Paterson: De Bruijn Notation as a Nested Datatype, JFP'99
Fiore,Plotkin and Turi: Abstract Syntax and Variable Binding, LICS'99
\triangleright Represent lambda terms by a nested datatype
\triangleright Use a kind of de Bruijn notation

Cyclic Lists as Nested Datatype

\triangleright Our Proposal:

```
data CList a = Var a
    | Nil
    | RCons Int (CList (Maybe a))
```


Cyclic Lists as Nested Datatype

\triangleright Our Proposal:

```
data CList a = Var a
    | Nil
    | RCons Int (CList (Maybe a))
```

 data Maybe a = Nothing | Just a

Cyclic Lists as Nested Datatype

\triangleright Our Proposal:

```
    data CList a = Var a
    | Nil
    | RCons Int (CList (Maybe a))
```

 data Maybe a = Nothing | Just a
 \triangleright Example

* RCons 1 (RCons 2 (Var Nothing)) : : CList Void

\triangleright Var a represents a backward pointer to an element in a list.
\triangleright Nothing is the pointer to the first element of a cyclic list.
\triangleright Just Nothing is for the second element, etc.
\triangleright The complete cyclic list has type CList Void (Void is def'd by data Void)

Examples

\triangleright RCons 1 (RCons 2 (RCons 3 (Var (Just Nothing)))) :: CList Void

Examples

\triangleright RCons 1 (RCons 2 (RCons 3 (Var (Just Nothing)))) :: CList Void

\triangleright RCons 1 (RCons 2 (RCons 3 Nil)) :: CList Void

\triangleright Merit: no dangling pointer, i.e. no pointers which point outside the list

Examples

\triangleright RCons 1 (RCons 2 (RCons 3 (Var (Just Nothing)))) :: CList Void

\triangleright RCons 1 (RCons 2 (RCons 3 Nil)) :: CList Void

\triangleright Merit: no dangling pointer, i.e. no pointers which point outside the list \triangleright If type CList Void, it is safe

Examples

\triangleright RCons 1 (RCons 2 (RCons 3 (Var (Just Nothing)))) :: CList Void

\triangleright RCons 1 (RCons 2 (RCons 3 Nil)) :: CList Void

\triangleright Merit: no dangling pointer, i.e. no pointers which point outside the list \triangleright If type CList Void, it is safe
\triangleright E.g. (RCons 3 (Var (Just Nothing))) : : CList (Maybe (Maybe Void))
\triangleright Different from integer pointer representation

Examples

\triangleright RCons 1 (RCons 2 (RCons 3 (Var (Just Nothing)))) :: CList Void

\triangleright RCons 1 (RCons 2 (RCons 3 Nil)) :: CList Void

\triangleright Merit: no dangling pointer, i.e. no pointers which point outside the list
\triangleright If type CList Void, it is safe
\triangleright E.g. (RCons 3 (Var (Just Nothing))) :: CList (Maybe (Maybe Void))
\triangleright Different from integer pointer representation
\triangleright Unique representation

Plan

I. Main Part
\triangleright Cyclic lists
\triangleright Cyclic binary trees
\triangleright Semantics
II. More Details
\triangleright Generalized fold on cyclic lists
\triangleright General cyclic datatypes
\triangleright de Bruijn levels/indexes and type classes

I. Main Part

Cyclic Lists as Nested Datatype

```
data CList a = Var a
    | Nil
    | RCons Int (CList (Maybe a))
```

- List algebra structure on Cyclic Lists:

```
cnil :: CList Void
cnil = Nil ccons x xs = RCons x (shift xs)
```

shift : : CList a -> CList (Maybe a)
shift (Var z) = Var (Just z)
shift Nil = Nil
shift (RCons x xs) = RCons x (shift xs)
\triangleright Since pointers denote "absolute positions", we need to shift the positions when consing \Leftrightarrow de Bruijn's levels

Cyclic Lists as Nested Datatype

```
data CList a = Var a
    | Nil
    | RCons Int (CList (Maybe a))
```

- List algebra structure on Cyclic Lists:

```
cnil :: CList Void
ccons :: Int -> CList Void -> CList Void
cnil = Nil ccons x xs = RCons x (shift xs)
```

shift : : CList a -> CList (Maybe a)
shift (Var z) = Var (Just z)
shift Nil = Nil
shift (RCons x xs) = RCons x (shift xs)
\triangleright Since pointers denote "absolute positions", we need to shift the positions when consing \Leftrightarrow de Bruijn's levels
\triangleright If we use "relative positions" (\Leftrightarrow de Bruijn's indexes) we don't need shifting ... another problem

Cyclic Lists as Nested Datatype

\triangleright "Standard" fold:

```
    cfold : : (forall a . a -> g a)
        -> (forall a . g a)
        -> (forall a . Int -> g (Maybe a) -> g a)
        -> CList a -> g a
    cfold v n r (Var z) \(=\) v z
    cfold v n r Nil = n
    cfold v n r (RCons \(x\) xs) = r \(x\) (cfold vnris)
```

\triangleright Example:
newtype $\mathrm{K} \mathrm{a}=\mathrm{K}$ Int

Cyclic Lists as Nested Datatype

\triangleright "Standard" fold:

```
    cfold :: (forall a . a -> g a)
        -> (forall a . g a)
            -> (forall a . Int -> g (Maybe a) -> g a)
            -> CList a -> g a
    cfold v n r (Var z) = v z
    cfold v n r Nil = n
    cfold v n r (RCons \(x\) xs) \(=r x\) (cfold \(v n r x s)\)
```

\triangleright Example:
newtype $\mathrm{K} \mathrm{a}=\mathrm{K}$ Int
csum = cfold ($\backslash \mathrm{x}$-> K 0) (K 0) ($\backslash \mathrm{i}(\mathrm{K} j$) -> $\mathrm{K}(i+j)$)

csum clist1 ==> 3

Cyclic Tail

Cyclic Tail - full cyclic case

\triangleright If the list is full cyclic, append the first element to the last,
\triangleright Otherwise, take a tail \& decrease the pointer

Cyclic Lists as Nested Datatype

\triangleright List coalgebra structure on cyclic Lists:
chead :: CList Void -> Int
chead (RCons x _) = x
ctail :: CList Void -> CList Void
ctail (RCons x xs) = csnoc x xs
\triangleright csnoc y xs appends an element y to the last of x s
csnoc : : Int -> CList (Maybe a) -> CList a
csnoc y (Var Nothing) = RCons y (Var Nothing)
csnoc y (Var (Just z)) = Var z
csnoc y Nil = Nil
csnoc y (RCons x xs) $=$ RCons x (csnoc $y x s)$

Cyclic Lists as Nested Datatype

\triangleright Interpreting cyclic lists as infinite lists:

```
unwind :: CList Void -> [Int]
unwind Nil = []
unwind xs = chead xs : unwind (ctail xs)
```


Cyclic Binary Trees

\triangleright Our Proposal of datatype of cyclic binary trees:
data CTree $\mathrm{a}=\operatorname{VarT} \mathrm{a}$
| Leaf
| RBin Int (CTree (Maybe a)) (CTree (Maybe a))
\triangleright Cyclic binary trees with data at the nodes
\triangleright Each node has an "address" in top-down manner.
\triangleright All nodes on the same level have the same "address".
\triangleright Has only backpointers to form cycles.
\triangleright Pointers to other directions forbidden, hence no sharing.

Example


```
RBin 1 (RBin 2 (RBin 3 (VarT Nothing) Leaf)
    Leaf)
    (RBin 4 (RBin 5 Leaf Leaf)
    (RBin 6 Leaf Leaf))
```


Cyclic Binary Trees

\triangleright Tree algebra structure:

```
cleaf :: CTree Void
cleaf = Leaf
cbin :: Int -> CTree Void -> CTree Void -> CTree Void
cbin x xsL xsR = RBin x (shiftT xsL) (shiftT xsR)
shiftT :: CTree a -> CTree (Maybe a)
shiftT (VarT z) = VarT (Just z)
shiftT Leaf = Leaf
shiftT (RBin x xsL xsR) = RBin x (shiftT xsL)
                                (shiftT xsR)
```


Cyclic Children

Append " 1 " to the cyclic point with keeping the right subtree

Cyclic Children

\triangleright Taking the left subtree operation:

```
csubL :: CTree Void -> CTree Void
csubL (RBin x xsL xsR) = csnocL x xsR xsL
```

\triangleright csnocL y ys xs appends an element y (with ys) to the leaf of xs

```
csnocL :: Int -> CTree (Maybe a)
                            -> CTree (Maybe a) -> CTree a
```

 csnocL y ys (VarT Nothing) = RBin y (VarT Nothing) ys
 csnocL y ys (VarT (Just z)) = VarT z
 csnocL y ys Leaf = Leaf
 csnocL y ys (RBin \(x\) xsL xsR) = RBin y (csnocL y ys' xsL)
 (csnocL y ys' xsR)
 where ys' = shiftT ys
 \triangleright Generalization of ctail

Semantics - Cyclic Lists

```
data List \(=\) Nil | Cons Int List
data CList a = Var a
    | RNil
    | RCons Int (CList (Maybe a))
cnil \(=\) RNil
ccons x xs \(\quad=\) RCons \(x\) (shift xs)
chead (RCons x _) = x
ctail (RCons x xs) = csnoc x xs
```


Semantics - Cyclic Lists

\triangleright List functor $\quad \boldsymbol{F}:$ Set \rightarrow Set, $\quad \boldsymbol{F} \boldsymbol{X}=\mathbf{1}+\mathbb{Z} \times \boldsymbol{X}$

Semantics - Cyclic Lists

$\begin{array}{lll}\triangleright \text { List functor } & \boldsymbol{F}: \text { Set } \rightarrow \text { Set, } & \boldsymbol{F} \boldsymbol{X}=\mathbf{1}+\mathbb{Z} \times \boldsymbol{X} \\ \triangleright & \text { Cyclic list functor } \boldsymbol{G}: \text { Set }^{\text {Set }} \rightarrow \text { Set }^{\text {Set }}, & \boldsymbol{G A}=\mathrm{Id}+\mathbf{1}+\mathbb{Z} \times A(\mathbf{1}+-)\end{array}$

Semantics - Cyclic Lists

\triangleright List functor $\quad \boldsymbol{F}:$ Set \rightarrow Set, $\quad \boldsymbol{F} \boldsymbol{X}=1+\mathbb{Z} \times \boldsymbol{X}$
\triangleright Cyclic list functor $G:$ Set $^{\text {Set }} \rightarrow$ Set $^{\text {Set }}, \quad G A=\mathrm{Id}+1+\mathbb{Z} \times A(1+-)$
\triangleright Initial G-algebra $G C \cong C \in \operatorname{Set}^{\text {Set }}$ Set $\ni C_{0}=$ (CList Void)

Semantics - Cyclic Lists

$$
\begin{aligned}
& \triangleright \text { List functor } \quad \boldsymbol{F}: \text { Set } \rightarrow \text { Set, } \quad \boldsymbol{F} \boldsymbol{X}=1+\mathbb{Z} \times \boldsymbol{X} \\
& \triangleright \text { Cyclic list functor } G: \text { Set }^{\text {Set }} \rightarrow \text { Set }^{\text {Set }}, \quad G A=\operatorname{Id}+1+\mathbb{Z} \times A(1+-) \\
& \triangleright \text { Initial } G \text {-algebra } G C \cong C \in \operatorname{Set}^{\text {Set }} \\
& \text { Set } \ni C_{0}=\text { (CList Void) }
\end{aligned}
$$

II. More details

\triangleright Generalized fold

- General cyclic datatypes
\triangleright de Bruijn levels/indexes

Fold on Cyclic Lists

\triangleright "Standard" fold:

```
    cfold :: (forall a . a -> g a)
        -> (forall a . g a)
        -> (forall a . Int -> g (Maybe a) -> g a)
    -> CList a -> g a
    cfold v n r (Var z) = v z
    cfold v n r Nil = n
    cfold v n r (RCons \(x\) xs) \(=r x\) (cfold \(v n r x s)\)
```

\triangleright This gives cfold (v n c) : : CList a -> T a

Fold on Cyclic Lists

\triangleright General recursive definition

```
csnoc y (Var Nothing) = RCons y (Var Nothing)
csnoc y (Var (Just z)) = Var z
csnoc y Nil = Nil
csnoc y (RCons x xs) = RCons x (csnoc y xs)
```


Fold on Cyclic Lists

\triangleright General recursive definition

```
    csnoc y (Var Nothing) = RCons y (Var Nothing)
    csnoc y (Var (Just z)) = Var z
    csnoc y Nil = Nil
    csnoc y (RCons x xs) = RCons x (csnoc y xs)
```

\triangleright Instead: use cfold (v n c) : CList a -> \boldsymbol{T} a

```
csnoc :: Int -> CList (Maybe a) -> CList a
csnoc z xs = cfold var Nil Cons xs
    where var Nothing = RCons z (Var Nothing)
        var (Just n) = Var n
```


Fold on Cyclic Lists

\triangleright General recursive definition

```
    csnoc y (Var Nothing) = RCons y (Var Nothing)
    csnoc y (Var (Just z)) = Var z
    csnoc y Nil = Nil
    csnoc y (RCons x xs) = RCons x (csnoc y xs)
```

\triangleright Instead: use cfold (v n c) : CList a -> \boldsymbol{T} a

```
csnoc :: Int -> CList (Maybe a) -> CList a
csnoc z xs = cfold var Nil Cons xs
    where var Nothing = RCons z (Var Nothing)
        var (Just n) = Var n
```

\triangleright But type mismatch!
Need: cfold' (v n c) : : CList (Maybe a) -> T a

Fold on Cyclic Lists

\triangleright Define cfold' (v n c) : CList (Maybe a) $->T$ a

```
cfold' :: (forall a. Maybe a -> f a) ->
    (forall a . f a) ->
    (forall a. Int -> f (Maybe a) -> f a) ->
    CList (Maybe a) -> f a
cfold' v n c (Var x) = v x
cfold' v n c Nil = n
cfold' v n c (Cons x l) = c x (cfold' v n c l)
```


Fold on Cyclic Lists

\triangleright Define cfold' (v n c) : CList (Maybe a) $->T$ a

```
cfold' :: (forall a. Maybe a -> f a) ->
            (forall a . f a) ->
            (forall a. Int -> f (Maybe a) -> f a) ->
            CList (Maybe a) -> f a
cfold' v n c (Var x) = v x
cfold' v n c Nil = n
cfold' v n c (Cons x l) = c x (cfold' v n c l)
```

\triangleright The same definition as "Standard" fold:

```
cfold :: (forall a . a -> g a)
    -> (forall a . g a)
    -> (forall a . Int -> g (Maybe a) -> g a)
    -> CList a -> g a
cfold v n r (Var z) = v z
cfold v n r Nil = n
cfold v n r (RCons x xs) = r x (cfold v n r xs)
```


Fold on Cyclic Lists

\triangleright Generalized fold for nested datatype via a right Kan extension:
cefold (v n c) : : CList (M a) $->T$ a
[Bird,Paterson'99][Martin, Gibbons, Bayley'04][Abel, Matthes, Uustalu'05]

```
cefold :: (forall a. Maybe (m a) -> h (Maybe a))
    -> (forall a . m a -> t a)
    -> (forall a . t a)
    -> (forall a . Int -> g (Maybe a) -> t a)
    -> CList (m a) -> t a
cefold d v n r (Var z) = v z
cefold d v n r Nil = n
cefold d v n r (RCons x xs) = r x (cefold d v n r (fmap d xs))
\(\triangleright \mathrm{d}\) is a distributive law.
```


General Cyclic Datatypes

For any given algebraic datatype, we can give its cyclic version.

General Cyclic Datatypes

For any given algebraic datatype, we can give its cyclic version.
\triangleright Lists

$$
\begin{aligned}
\boldsymbol{F} \boldsymbol{X} & =1+\mathbb{Z} \times \boldsymbol{X} \\
& \downarrow \\
\tilde{\boldsymbol{F}} \boldsymbol{X} & =1+\mathbb{Z} \times X(1+-)+\mathrm{Id}
\end{aligned}
$$

General Cyclic Datatypes

For any given algebraic datatype, we can give its cyclic version.
\triangleright Lists

$$
\begin{aligned}
\boldsymbol{F} \boldsymbol{X} & =1+\mathbb{Z} \times \boldsymbol{X} \\
& \downarrow \\
\tilde{\boldsymbol{F}} \boldsymbol{X} & =1+\mathbb{Z} \times X(1+-)+\mathrm{Id}
\end{aligned}
$$

\triangleright Binary trees $\quad \boldsymbol{F} \boldsymbol{X}=\mathbf{1}+\mathbb{Z} \times \boldsymbol{X} \times \boldsymbol{X}$ \downarrow
$\tilde{F} X=1+\mathbb{Z} \times X(1+-) \times X(1+-)+$ Id

General Cyclic Datatypes

For any given algebraic datatype, we can give its cyclic version.

$$
\triangleright \text { Lists } \quad \begin{aligned}
\boldsymbol{F} \boldsymbol{X} & =1+\mathbb{Z} \times \boldsymbol{X} \\
& \downarrow \\
\tilde{\boldsymbol{F}} \boldsymbol{X} & =1+\mathbb{Z} \times \boldsymbol{X}(1+-)+\mathrm{Id}
\end{aligned}
$$

```
Binary trees }\quad\boldsymbol{F}\boldsymbol{X}=1+\mathbb{Z}\times\boldsymbol{X}\times\boldsymbol{X
        \downarrow
\tilde{F}X=1+\mathbb{Z}\timesX(1+-)\timesX(1+-)+Id
\(\triangleright\) General case ... easy to guess
```


General Cyclic Datatypes

For any given algebraic datatype, we can give its cyclic version.
\triangleright Lists

$$
\begin{aligned}
\boldsymbol{F} \boldsymbol{X} & =1+\mathbb{Z} \times \boldsymbol{X} \\
& \downarrow \\
\tilde{\boldsymbol{F}} \boldsymbol{X} & =1+\mathbb{Z} \times \boldsymbol{X}(1+-)+\mathrm{Id}
\end{aligned}
$$

\triangleright Binary trees $\quad \boldsymbol{F} \boldsymbol{X}=\mathbf{1}+\mathbb{Z} \times \boldsymbol{X} \times \boldsymbol{X}$ \downarrow $\tilde{F} X=1+\mathbb{Z} \times X(1+-) \times X(1+-)+$ Id
\triangleright General case ... easy to guess
\triangleright How about general "subtree"? "snoc" operation?

General Cyclic Datatypes

For any given algebraic datatype, we can give its cyclic version.
\triangleright Lists

$$
\begin{aligned}
\boldsymbol{F} \boldsymbol{X} & =1+\mathbb{Z} \times \boldsymbol{X} \\
& \downarrow \\
\tilde{\boldsymbol{F}} \boldsymbol{X} & =1+\mathbb{Z} \times X(1+-)+\mathrm{Id}
\end{aligned}
$$

\triangleright Binary trees

$$
\begin{aligned}
F X & =1+\mathbb{Z} \times X \times X \\
& \downarrow \\
\tilde{F} X & =1+\mathbb{Z} \times X(1+-) \times X(1+-)+\text { Id }
\end{aligned}
$$

\triangleright General case ... easy to guess
\triangleright How about general "subtree"? "snoc" operation?
\triangleright Derivative of datatype is useful

General Cyclic Datatypes

\triangleright Binary trees

$$
F X=1+\mathbb{Z} \times X \times X
$$

\triangleright Derivative of datatype (e.g. binary trees, $\left.\left(1+\boldsymbol{z} \boldsymbol{x}^{2}\right)^{\prime}=\mathbf{2 z x}\right)$ $\boldsymbol{F}^{\prime} \boldsymbol{X}=\mathbb{Z} \boldsymbol{X}+\mathbb{Z} \boldsymbol{X} \quad$ gives a "one-hole context" [McBride'01]

General Cyclic Datatypes

\triangleright Binary trees

$$
F X=1+\mathbb{Z} \times X \times X
$$

\triangleright Derivative of datatype (e.g. binary trees, $\left(1+\boldsymbol{z} \boldsymbol{x}^{2}\right)^{\prime}=\mathbf{2 z x}$) $\boldsymbol{F}^{\prime} \boldsymbol{X}=\mathbb{Z} \boldsymbol{X}+\mathbb{Z} \boldsymbol{X} \quad$ gives a "one-hole context" [McBride'01]
\triangleright Original snoc for binary trees

```
csnocL :: Int -> CTree (Maybe a)
    -> CTree (Maybe a) -> CTree a
csnocL y ys (VarT Nothing) = RBin y (VarT Nothing) ys
```

\triangleright One-hole context is useful: combCtx : $\boldsymbol{F}^{\prime} \boldsymbol{X} \times \boldsymbol{X} \longrightarrow \boldsymbol{F} \boldsymbol{X}$ is the "plug-in" operation that fills a hole csnocL ctx (VarT Nothing) = combCtx ctx (VarT Nothing)

Conclusions

\triangleright Generic framework to model cyclic structures

Conclusions

\triangleright Generic framework to model cyclic structures
\triangleright Backward pointers - no sharing, just cycles

Conclusions

\triangleright Generic framework to model cyclic structures
\triangleright Backward pointers - no sharing, just cycles
\triangleright Type system guarantees the safety of pointers

Conclusions

\triangleright Generic framework to model cyclic structures
\triangleright Backward pointers - no sharing, just cycles
\triangleright Type system guarantees the safety of pointers
\triangleright The technique scales up to all polynomial datatypes

Conclusions

\triangleright Generic framework to model cyclic structures
\triangleright Backward pointers - no sharing, just cycles
\triangleright Type system guarantees the safety of pointers
\triangleright The technique scales up to all polynomial datatypes
To do:
\triangleright Extend this to sharing
\triangleright Develop a categorical account of rational and cyclic coinductive types
\triangleright Practical examples
\triangleright Efficiency: regard these as combinators of cyclic structures?
\triangleright Fusion?

Conclusions

\triangleright Generic framework to model cyclic structures
\triangleright Backward pointers - no sharing, just cycles
\triangleright Type system guarantees the safety of pointers
\triangleright The technique scales up to all polynomial datatypes
To do:
\triangleright Extend this to sharing
\triangleright Develop a categorical account of rational and cyclic coinductive types
\triangleright Practical examples
\triangleright Efficiency: regard these as combinators of cyclic structures?
\triangleright Fusion?
Paper, slides and programs at:

```
http://www.keim.cs.gunma-u.ac.jp/~hamana/
```


De Bruijn Indexes

\triangleright Relative pointers rather than absolute ones

* Relative: RCons 1 (RCons 2 (Var (Just (Just Nothing))))

De Bruijn Indexes

\triangleright Relative pointers rather than absolute ones

* Relative: RCons 1 (RCons 2 (Var (Just (Just Nothing))))

\triangleright This case:
ccons :: Int -> CList Void -> CList Void
ccons x xs $=$ RCons x xs

De Bruijn Indexes

\triangleright Relative pointers rather than absolute ones

* Relative: RCons 1 (RCons 2 (Var (Just (Just Nothing))))

\triangleright This case:

```
ccons :: Int -> CList Void -> CList Void
```

ccons x xs $=$ RCons x xs
-- RCons : : Int -> CList (Maybe a) -> CList a
But type mismatch

De Bruijn Indexes

\triangleright Second try:

```
ccons :: Int -> CList Void -> CList Void
ccons x xs = RCons x (emb xs)
emb :: CList a -> CList (Maybe a)
emb (Var z) = Var z
emb Nil = Nil
emb (RCons x xs) = RCons x (emb xs)
```


De Bruijn Indexes

\triangleright Second try:

```
ccons :: Int -> CList Void -> CList Void
ccons x xs = RCons x (emb xs)
emb :: CList a -> CList (Maybe a)
emb (Var z) = Var z
emb Nil = Nil
emb (RCons x xs) = RCons x (emb xs)
ERROR "clists.hs":36 - Type error in explicitly typed binding
*** Term : emb
*** Type : CList a -> CList a
*** Does not match : CList a -> CList (Maybe a)
*** Because
    : unification would give infinite type
```


De Bruijn Indexes - Correct Definition

```
class DeBrIdx a where
    wk :: a -> Maybe a
instance DeBrIdx Void where
    wk _ = undefined
instance DeBrIdx a => DeBrIdx (Maybe a) where
    wk Nothing = Nothing
    wk (Just x) = Just (wk x)
instance Functor CList where
    fmap f (Var a) = Var (f a)
    fmap f Nil = Nil
    fmap f (RCons x xs) = RCons x (fmap (fmap f) xs)
emb :: DeBrIdx a => CList a -> CList (Maybe a)
emb = fmap wk
ccons :: Int -> CList Void -> CList Void
ccons x xs = RCons x (emb xs)
```


De Bruijn Indexes - Correct Definition

emb :: DeBrIdx a => CList a -> CList (Maybe a)
ccons :: Int -> CList Void -> CList Void
ccons x xs $=$ RCons x (emb xs)
\triangleright Typed program is less efficient than untyped program?
\triangleright Type equality coercion? (suggested by Simon Peyton-Jones at TFP'06) Core language of Haskell: System F with type equality coercion

