
Representing Cyclic Structures

as Nested Datatypes

Makoto Hamana

Department of Computer Science,

Gunma University, Japan

Joint work with

Neil Ghani Tarmo Uustalu Varmo Vene
U. Nottingham U. Tallinn U. Tartu

ToPS, 2006, May
1



Motivation

B Algebraic datatypes provide a nice way to represent tree-like structures

2



Motivation

B Algebraic datatypes provide a nice way to represent tree-like structures

B Lazy languages, e.g. Haskell, allow to build also cyclic structures

cycle = 1 : 2 : cycle

2



Motivation

B Algebraic datatypes provide a nice way to represent tree-like structures

B Lazy languages, e.g. Haskell, allow to build also cyclic structures

cycle = 1 : 2 : cycle

or equivalently

cycle = fix (\ xs -> 1 : 2 : xs)

fix f = x where x = f x

2



Motivation

B Algebraic datatypes provide a nice way to represent tree-like structures

B Lazy languages, e.g. Haskell, allow to build also cyclic structures

cycle = 1 : 2 : cycle

or equivalently

cycle = fix (\ xs -> 1 : 2 : xs)

fix f = x where x = f x

B Allows to represent infinite structures in finite memory

2



Motivation

B Algebraic datatypes provide a nice way to represent tree-like structures

B Lazy languages, e.g. Haskell, allow to build also cyclic structures

cycle = 1 : 2 : cycle

or equivalently

cycle = fix (\ xs -> 1 : 2 : xs)

fix f = x where x = f x

B Allows to represent infinite structures in finite memory

B Problem: No support for manipulating cyclic structures

2



Problems on the Usual Approach

B No support for manipulating cyclic structures

B E.g. · · · destructing the cyclic structure!

map (+1) cycle ==> [2,3,2,3,2,3,2,3,....

3



Problems on the Usual Approach

B No support for manipulating cyclic structures

B E.g. · · · destructing the cyclic structure!

map (+1) cycle ==> [2,3,2,3,2,3,2,3,....

B No way to distinguish cyclic / infinite structures

3



Problems on the Usual Approach

B No support for manipulating cyclic structures

B E.g. · · · destructing the cyclic structure!

map (+1) cycle ==> [2,3,2,3,2,3,2,3,....

B No way to distinguish cyclic / infinite structures

B Q. Can we represent cyclic structures inductively?
i.e. by algebraic datatypes

3



Problems on the Usual Approach

B No support for manipulating cyclic structures

B E.g. · · · destructing the cyclic structure!

map (+1) cycle ==> [2,3,2,3,2,3,2,3,....

B No way to distinguish cyclic / infinite structures

B Q. Can we represent cyclic structures inductively?
i.e. by algebraic datatypes

B Merit: explicitly manipulate cyclic structures

either directly or using generic operations like fold
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Fegaras-Sheard Approach

B Cyclic lists as Mixed-variant Datatype by Fegaras, Sheard (POPL’96):

data CList = Nil

| Cons Int CList

| Rec (CList -> CList)
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Fegaras-Sheard Approach

B Cyclic lists as Mixed-variant Datatype by Fegaras, Sheard (POPL’96):

data CList = Nil

| Cons Int CList

| Rec (CList -> CList)

B Examples:

clist1 = Rec (\ xs -> Cons 1 (Cons 2 xs))

clist2 = Cons 1 (Rec (\ xs -> Cons 2 (Cons 3 xs)))

B Functions manipulating these representations must unfold Rec-structures.

cmap :: (Int -> Int) -> CList -> CList

cmap g Nil = Nil

cmap g (Cons x xs) = Cons (g x) (cmap g xs)

cmap g (Rec f) = cmap g (f (Rec f))

B Implicit axiom: Rec f = f (Rec f)
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Fegaras-Sheard Approach: Problem

data CList = Nil

| Cons Int CList

| Rec (CList -> CList)

BB Functions manipulating cyclic lists must unwind them
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Fegaras-Sheard Approach: Problem

data CList = Nil

| Cons Int CList

| Rec (CList -> CList)

BB Functions manipulating cyclic lists must unwind them

B There is a “blackhole”

empty = Rec (\ xs -> xs)

B The representation is not unique:

clist1 = Rec (\ xs -> Cons 1 (Cons 2 xs))

clist1’ = Rec (\ xs -> Rec (\ ys ->

Cons 1 (Cons 2 (Rec (\ zs -> xs)))))

B The semantic category has to be algebraically compact (e.g. CPO)

for mixed-variant types to make semantic sense.

L ∼= 1 + Z×L + (L → L)
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Our Analysis

data CList = Nil

| Cons Int CList

| Rec (CList -> CList)

BB The same problem has already appeared in

“Higher-Order Abstract Syntax” (HOAS)

B Induction on function space?
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Our Analysis

data CList = Nil

| Cons Int CList

| Rec (CList -> CList)

BB The same problem has already appeared in

“Higher-Order Abstract Syntax” (HOAS)

B Induction on function space?

B The same solution was proposed in FP and in semantics

Bird and Paterson: De Bruijn Notation as a Nested Datatype, JFP’99

Fiore,Plotkin and Turi: Abstract Syntax and Variable Binding, LICS’99

B Represent lambda terms by a nested datatype

B Use a kind of de Bruijn notation
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data CList a = Var a
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| RCons Int (CList (Maybe a))
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Cyclic Lists as Nested Datatype

B Our Proposal:

data CList a = Var a

| Nil

| RCons Int (CList (Maybe a))

data Maybe a = Nothing | Just a

B Example

* RCons 1 (RCons 2 (Var Nothing)) :: CList Void

B Var a represents a backward pointer to an element in a list.

B Nothing is the pointer to the first element of a cyclic list.

B Just Nothing is for the second element, etc.

B The complete cyclic list has type CList Void (Void is def’d by data Void)
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Examples
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Examples

B RCons 1 (RCons 2 (RCons 3 (Var (Just Nothing)))) :: CList Void

B RCons 1 (RCons 2 (RCons 3 Nil)) :: CList Void

B Merit: no dangling pointer, i.e. no pointers which point outside the list

B If type CList Void, it is safe

B E.g. (RCons 3 (Var (Just Nothing))) :: CList (Maybe (Maybe Void))

B Different from integer pointer representation

B Unique representation
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Cyclic Lists as Nested Datatype

data CList a = Var a

| Nil

| RCons Int (CList (Maybe a))

BB List algebra structure on Cyclic Lists:

cnil :: CList Void ccons :: Int -> CList Void -> CList Void

cnil = Nil ccons x xs = RCons x (shift xs)

shift :: CList a -> CList (Maybe a)

shift (Var z) = Var (Just z)

shift Nil = Nil

shift (RCons x xs) = RCons x (shift xs)

B Since pointers denote “absolute positions”,

we need to shift the positions when consing ⇔ de Bruijn’s levels
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Cyclic Lists as Nested Datatype

data CList a = Var a

| Nil

| RCons Int (CList (Maybe a))

BB List algebra structure on Cyclic Lists:

cnil :: CList Void ccons :: Int -> CList Void -> CList Void

cnil = Nil ccons x xs = RCons x (shift xs)

shift :: CList a -> CList (Maybe a)

shift (Var z) = Var (Just z)

shift Nil = Nil

shift (RCons x xs) = RCons x (shift xs)

B Since pointers denote “absolute positions”,

we need to shift the positions when consing ⇔ de Bruijn’s levels

B If we use “relative positions” ( ⇔ de Bruijn’s indexes)

we don’t need shifting · · · another problem
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Cyclic Lists as Nested Datatype

B ”Standard” fold:

cfold :: (forall a . a -> g a)

-> (forall a . g a)

-> (forall a . Int -> g (Maybe a) -> g a)

-> CList a -> g a

cfold v n r (Var z) = v z

cfold v n r Nil = n

cfold v n r (RCons x xs) = r x (cfold v n r xs)

B Example:

newtype K a = K Int

csum = cfold (\ x -> K 0) (K 0) (\ i (K j) -> K (i+j))
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Cyclic Lists as Nested Datatype

B ”Standard” fold:

cfold :: (forall a . a -> g a)

-> (forall a . g a)

-> (forall a . Int -> g (Maybe a) -> g a)

-> CList a -> g a

cfold v n r (Var z) = v z

cfold v n r Nil = n

cfold v n r (RCons x xs) = r x (cfold v n r xs)

B Example:

newtype K a = K Int

csum = cfold (\ x -> K 0) (K 0) (\ i (K j) -> K (i+j))

csum clist1 ==> 3
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Cyclic Tail
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Cyclic Tail – full cyclic case

B If the list is full cyclic, append the first element to the last,

B Otherwise, take a tail & decrease the pointer
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Cyclic Lists as Nested Datatype

B List coalgebra structure on cyclic Lists:

chead :: CList Void -> Int

chead (RCons x _) = x

ctail :: CList Void -> CList Void

ctail (RCons x xs) = csnoc x xs

B csnoc y xs appends an element y to the last of xs

csnoc :: Int -> CList (Maybe a) -> CList a

csnoc y (Var Nothing) = RCons y (Var Nothing)

csnoc y (Var (Just z)) = Var z

csnoc y Nil = Nil

csnoc y (RCons x xs) = RCons x (csnoc y xs)
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Cyclic Lists as Nested Datatype

B Interpreting cyclic lists as infinite lists:

unwind :: CList Void -> [Int]

unwind Nil = []

unwind xs = chead xs : unwind (ctail xs)

16



Cyclic Binary Trees

B Our Proposal of datatype of cyclic binary trees:

data CTree a = VarT a

| Leaf

| RBin Int (CTree (Maybe a))

(CTree (Maybe a))

B Cyclic binary trees with data at the nodes

B Each node has an ”address” in top-down manner.

B All nodes on the same level have the same ”address”.

B Has only backpointers to form cycles.

B Pointers to other directions forbidden, hence no sharing.
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Example

RBin 1 (RBin 2 (RBin 3 (VarT Nothing) Leaf)

Leaf)

(RBin 4 (RBin 5 Leaf Leaf)

(RBin 6 Leaf Leaf))
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Cyclic Binary Trees

B Tree algebra structure:

cleaf :: CTree Void

cleaf = Leaf

cbin :: Int -> CTree Void -> CTree Void -> CTree Void

cbin x xsL xsR = RBin x (shiftT xsL) (shiftT xsR)

shiftT :: CTree a -> CTree (Maybe a)

shiftT (VarT z) = VarT (Just z)

shiftT Leaf = Leaf

shiftT (RBin x xsL xsR) = RBin x (shiftT xsL)

(shiftT xsR)
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Cyclic Children

Append “1” to the cyclic point

with keeping the right subtree

20



Cyclic Children

B Taking the left subtree operation:

csubL :: CTree Void -> CTree Void

csubL (RBin x xsL xsR) = csnocL x xsR xsL

B csnocL y ys xs appends an element y (with ys) to the leaf of xs

csnocL :: Int -> CTree (Maybe a)

-> CTree (Maybe a) -> CTree a

csnocL y ys (VarT Nothing) = RBin y (VarT Nothing) ys

csnocL y ys (VarT (Just z)) = VarT z

csnocL y ys Leaf = Leaf

csnocL y ys (RBin x xsL xsR) = RBin y (csnocL y ys’ xsL)

(csnocL y ys’ xsR)

where ys’ = shiftT ys

B Generalization of ctail
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Semantics – Cyclic Lists

data List = Nil | Cons Int List

data CList a = Var a

| RNil

| RCons Int (CList (Maybe a))

cnil = RNil

ccons x xs = RCons x (shift xs)

chead (RCons x _) = x

ctail (RCons x xs) = csnoc x xs
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Semantics – Cyclic Lists

B List functor F : Set → Set, FX = 1 + Z×X
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Semantics – Cyclic Lists

B List functor F : Set → Set, FX = 1 + Z×X

B Cyclic list functor G : SetSet → SetSet, GA = Id + 1 + Z×A(1 + −)

B Initial G-algebra GC ∼= C ∈ SetSet

Set 3 C0 = (CList Void)

“finite lists”FZ∗
∼=

[nil, cons]
- Z∗ initial F -alg. in Set

FC0

?

[cnil, ccons]
- C0

?

cpn
- FC0

“finite & infinite lists” Z∞
? ∼=

pn
“possible next”

- FZ∞
?

Z∞ 1 + Z×Z∞

xs ∗ or 〈head, tail〉(xs)
final F -coalg.
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II. More details

B Generalized fold

B General cyclic datatypes

B de Bruijn levels/indexes
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Fold on Cyclic Lists

B ”Standard” fold:

cfold :: (forall a . a -> g a)

-> (forall a . g a)

-> (forall a . Int -> g (Maybe a) -> g a)

-> CList a -> g a

cfold v n r (Var z) = v z

cfold v n r Nil = n

cfold v n r (RCons x xs) = r x (cfold v n r xs)

B This gives cfold (v n c) :: CList a -> T a
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Fold on Cyclic Lists

B General recursive definition

csnoc y (Var Nothing) = RCons y (Var Nothing)

csnoc y (Var (Just z)) = Var z

csnoc y Nil = Nil

csnoc y (RCons x xs) = RCons x (csnoc y xs)
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Fold on Cyclic Lists

B General recursive definition

csnoc y (Var Nothing) = RCons y (Var Nothing)

csnoc y (Var (Just z)) = Var z

csnoc y Nil = Nil

csnoc y (RCons x xs) = RCons x (csnoc y xs)

B Instead: use cfold (v n c) :: CList a -> T a

csnoc :: Int -> CList (Maybe a) -> CList a

csnoc z xs = cfold var Nil Cons xs

where var Nothing = RCons z (Var Nothing)

var (Just n) = Var n

B But type mismatch!

Need: cfold’ (v n c) :: CList (Maybe a) -> T a
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Fold on Cyclic Lists

B Define cfold’ (v n c) :: CList (Maybe a) -> T a

cfold’ :: (forall a. Maybe a -> f a) ->

(forall a . f a) ->

(forall a. Int -> f (Maybe a) -> f a) ->

CList (Maybe a) -> f a

cfold’ v n c (Var x) = v x

cfold’ v n c Nil = n

cfold’ v n c (Cons x l) = c x (cfold’ v n c l)
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Fold on Cyclic Lists

B Define cfold’ (v n c) :: CList (Maybe a) -> T a

cfold’ :: (forall a. Maybe a -> f a) ->

(forall a . f a) ->

(forall a. Int -> f (Maybe a) -> f a) ->

CList (Maybe a) -> f a

cfold’ v n c (Var x) = v x

cfold’ v n c Nil = n

cfold’ v n c (Cons x l) = c x (cfold’ v n c l)

B The same definition as ”Standard” fold:

cfold :: (forall a . a -> g a)

-> (forall a . g a)

-> (forall a . Int -> g (Maybe a) -> g a)

-> CList a -> g a

cfold v n r (Var z) = v z

cfold v n r Nil = n

cfold v n r (RCons x xs) = r x (cfold v n r xs)
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Fold on Cyclic Lists

B Generalized fold for nested datatype via a right Kan extension:

cefold (v n c) :: CList (M a) -> T a

[Bird,Paterson’99][Martin,Gibbons,Bayley’04][Abel,Matthes,Uustalu’05]

cefold :: (forall a. Maybe (m a) -> h (Maybe a))

-> (forall a . m a -> t a)

-> (forall a . t a)

-> (forall a . Int -> g (Maybe a) -> t a)

-> CList (m a) -> t a

cefold d v n r (Var z) = v z

cefold d v n r Nil = n

cefold d v n r (RCons x xs) = r x (cefold d v n r (fmap d xs))

B d is a distributive law.
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General Cyclic Datatypes

B Binary trees

FX = 1 + Z×X×X

B Derivative of datatype (e.g. binary trees, (1 + zx2)′ = 2zx)

F ′X = ZX + ZX gives a “one-hole context” [McBride’01]
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General Cyclic Datatypes

B Binary trees

FX = 1 + Z×X×X

B Derivative of datatype (e.g. binary trees, (1 + zx2)′ = 2zx)

F ′X = ZX + ZX gives a “one-hole context” [McBride’01]

B Original snoc for binary trees

csnocL :: Int -> CTree (Maybe a)

-> CTree (Maybe a) -> CTree a

csnocL y ys (VarT Nothing) = RBin y (VarT Nothing) ys

...

B One-hole context is useful:

combCtx :: F ′X×X - FX is the “plug-in” operation that fills a hole

csnocL ctx (VarT Nothing) = combCtx ctx (VarT Nothing)
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Conclusions

B Generic framework to model cyclic structures

B Backward pointers — no sharing, just cycles

B Type system guarantees the safety of pointers

B The technique scales up to all polynomial datatypes

To do:

B Extend this to sharing

B Develop a categorical account of rational and cyclic coinductive types

B Practical examples

B Efficiency: regard these as combinators of cyclic structures?

B Fusion?

Paper, slides and programs at:

http://www.keim.cs.gunma-u.ac.jp/˜hamana/
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B Relative pointers rather than absolute ones

* Relative: RCons 1 (RCons 2 (Var (Just (Just Nothing))))

B This case:

ccons :: Int -> CList Void -> CList Void

ccons x xs = RCons x xs
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De Bruijn Indexes

B Relative pointers rather than absolute ones

* Relative: RCons 1 (RCons 2 (Var (Just (Just Nothing))))

B This case:

ccons :: Int -> CList Void -> CList Void

ccons x xs = RCons x xs

-- RCons :: Int -> CList (Maybe a) -> CList a

But type mismatch

32



De Bruijn Indexes

B Second try:

ccons :: Int -> CList Void -> CList Void

ccons x xs = RCons x (emb xs)

emb :: CList a -> CList (Maybe a)

emb (Var z) = Var z

emb Nil = Nil

emb (RCons x xs) = RCons x (emb xs)
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De Bruijn Indexes

B Second try:

ccons :: Int -> CList Void -> CList Void

ccons x xs = RCons x (emb xs)

emb :: CList a -> CList (Maybe a)

emb (Var z) = Var z

emb Nil = Nil

emb (RCons x xs) = RCons x (emb xs)

ERROR "clists.hs":36 - Type error in explicitly typed binding

*** Term : emb

*** Type : CList a -> CList a

*** Does not match : CList a -> CList (Maybe a)

*** Because : unification would give infinite type
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De Bruijn Indexes – Correct Definition

class DeBrIdx a where instance DeBrIdx Void where

wk :: a -> Maybe a wk _ = undefined

instance DeBrIdx a => DeBrIdx (Maybe a) where

wk Nothing = Nothing

wk (Just x) = Just (wk x)

instance Functor CList where

fmap f (Var a) = Var (f a)

fmap f Nil = Nil

fmap f (RCons x xs) = RCons x (fmap (fmap f) xs)

emb :: DeBrIdx a => CList a -> CList (Maybe a)

emb = fmap wk

ccons :: Int -> CList Void -> CList Void

ccons x xs = RCons x (emb xs)
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De Bruijn Indexes – Correct Definition

emb :: DeBrIdx a => CList a -> CList (Maybe a)

ccons :: Int -> CList Void -> CList Void

ccons x xs = RCons x (emb xs)

BB Typed program is less efficient than untyped program?

B Type equality coercion? (suggested by Simon Peyton-Jones at TFP’06)

Core language of Haskell: System F with type equality coercion
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