# Complete Algebraic Semantics for Second-Order Rewriting Systems based on Abstract Syntax with Variable Binding

1

Makoto Hamana

Faculty of Informatics, Gunma University, Japan

SYCO 10

19th December, 2022, Edinburgh

This Talk

- ▷ Complete algebraic semantics of second-order rewriting
- ▷ Based on my paper
  - Complete Algebraic Semantics for Second-Order Rewriting Systems based on Abstract Syntax with Variable Binding
  - MSCS, CUP, 2022,
     Special Issue of John Power Festschrift



Abstract

References

By using algebraic structures in a presheaf category over finite sets, following Fiore, Plotkin and Turi, we develop sound and complete models of second-order rewriting systems called second-order computation systems (CSs). Restricting the algebraic structures to those equipped with well-founded relations, we obtain a complete characterisation of terminating CSs. We also extend the characterisation to rewriting on meta-terms using the notion of  $\Sigma$ -monoid.

Rights & Permissions

Complete algebraic semantics for second-order rewriting systems based on abstract syntax with variable binding

Published online by Cambridge University Press: 14 October 2022

66 Cite

#### Keywords

Makoto Hamana (D

Metrics

A Share

Article

Get access

Abstract

| Term rewriting | higher-order rewriting                                                                                                       | termination | algebraic models | higher-order abstract syntax |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|------------------------------|--|--|
|                |                                                                                                                              |             |                  |                              |  |  |
| Туре           | Special Issue: The Power Festschrift                                                                                         |             |                  |                              |  |  |
| Information    | Mathematical Structures in Computer Science, Volume 32, Special Issue 4: The Power<br>Festschrift, April 2022, pp. 542 - 573 |             |                  |                              |  |  |

Show author details ~

#### First-order Rewriting: Review

First-Order Term Rewriting System (TRS)  $\mathcal{R}$ :

$$fact(0) \rightarrow S(0)$$
  
 $fact(S(x)) \rightarrow fact(x) * S(x)$ 

**Rewrite steps:** 

 $fact(S(S(0))) \implies fact(S(0)) * S(S(0)) \implies (fact(0) * S(0)) * S(S(0)) \\ \implies (S(0) * S(0)) * S(S(0)) \implies S(S(0)) \pmod{100} \pmod{100}$ 

3

#### **Fundametal problem**

- ▷ Termination (Strong Normalisation)
- $\triangleright$  How can we prove the termination of  $\mathcal{R}$ ?

Thm. [Huet and Lankford'78]

A first-order term rewriting system  ${\cal R}$  is terminating

4

 $\Leftrightarrow$ 

there exists a well-founded monotone  $\Sigma$ -algebra  $(A, >_A)$  that is compatible with  $\mathcal{R}$ .

**Termination proof method** 

 $[\Leftarrow]$  Find a well-founded monotone  $\Sigma$ -algebra that is compatible with  $\mathcal{R}$ .

#### First-order Rewriting: Review

First-Order Term Rewriting System (TRS)  $\mathcal{R}$ :

 $\begin{aligned} &fact(0) \to S(0) \\ &fact(S(x)) \to fact(x) * S(x) \end{aligned}$ 

5

Semantics: well-founded monotone  $\Sigma$ -algebra ( $\mathbb{N}, >$ ) given by

$$fact^{\mathbb{N}}(x)=2x+2 \qquad x*^{\mathbb{N}}y=x+y \qquad S^{\mathbb{N}}(x)=2x+1 \qquad 0^{\mathbb{N}}=1$$

Then it is compatible with  ${oldsymbol {\cal R}}$  as

Hence  $\mathcal{R}$  is terminating.

Thm. [Huet and Lankford'78]

A first-order term rewriting system  ${\cal R}$  is terminating

6

 $\Leftrightarrow$ 

there exists a well-founded monotone  $\Sigma$ -algebra A that is compatible with  $\mathcal{R}$ .

▷ Aim: Extend this to second-order rewriting

▷ Give: Complete algebraic semantics of second-order rewriting

#### Example of Second-Order Rewriting : Prenex normal forms

$$\begin{array}{ll} \mathbb{P} \land \forall (x.\mathbb{Q}[x]) & \to \forall (x.\mathbb{P} \land \mathbb{Q}[x]) & \neg \forall (x.\mathbb{Q}[x]) & \to \exists (x.\neg(\mathbb{Q}[x])) \\ \forall (x.\mathbb{Q}[x]) \land \mathbb{P} & \to \forall (x.\mathbb{Q}[x] \land \mathbb{P}) & \neg \exists (x.\mathbb{Q}[x]) & \to \forall (x.\neg(\mathbb{Q}[x])) \end{array}$$
  
Signature:  $\neg, \land, \lor, \forall, \exists$ 

Second-Order Rewriting System is defined on Second-Order Abstract Syntax [Hamana'04, Fiore LICS'06]

- ▷ Abstract syntax with variable binding [Fiore, Plotkin, Turi LICS'99]
- $\triangleright$  Metavariables with arities (e.g. P,Q)
- ▷ Substitutions (Metavars, object vars)

Example: the  $\lambda$ -calculus as a Second-Order Rewriting System

 $\lambda(x.M[x]) @ N \rightarrow M[N]$  $\lambda(x.M @ x) \rightarrow M$ 

 $\triangleright$  Signature:  $\lambda$ , @

#### Abstract Syntax and Variable Binding [Fiore, Plotkin, Turi LICS'99]

▷ Aim: To model syntax with variable binding, e.g.

$$egin{aligned} rac{x_1,\ldots,x_n\,dash\,t\, x_1,\ldots,x_n\,dash\,t\, x_1,\ldots,x_n\,dash\,t\, x_n,\ldots,x_n\,dash\,t\, x_n,\ldots,x_n\,dash\,t\, x_n,\ldots,x_n\,dash\,t\, x_n,\ldots,x_n\,dash\,t\, x_n,\ldots,x_n\,dash\,t\, x_n,\ldots,x_n\,dass\,t\, x_n,\ldots,x_n\,$$

9

- ▷ Syntax generated by 3 constructors
- $\triangleright$   $\lambda$  is a special unary function symbol: it decreases the context

### Abstract Syntax and Variable Binding [Fiore, Plotkin, Turi LICS'99]

▷ Aim: model syntax with variable binding, e.g.

10

- Category  $\mathbb{F}$  for variable contexts
  objects:  $n = \{1, \ldots, n\}$  (variable contexts)
  arrows: all functions  $n \to n'$  (renamings)
- $\triangleright$  Presheaf category **Set**<sup> $\mathbb{F}$ </sup>

Def. A binding signature  $\Sigma$  is a set of function symbols with binding arities:

 $f:\langle n_1,\ldots,n_l
angle$ 

11

which has l arguments and binds  $n_i$  variables in the i-th argument .

Def. A  $\Sigma$ -algebra  $A = (A, [f^A]_{f \in \Sigma})$  in  $\mathbf{Set}^{\mathbb{F}}$  consists of

- $\triangleright$  carrier: a presheaf  $A \in \mathbf{Set}^{\mathbb{F}}$
- $\triangleright$  operations: arrows of **Set**<sup> $\mathbb{F}$ </sup>

$$f^A:\delta^{n_1}A imes\ldots imes\delta^{n_l}A\longrightarrow A$$

corresponding to function symbols  $f:\langle n_1,\ldots,n_l
angle\in \Sigma.$ 

 $\triangleright$  Context extension:  $\delta A \in \operatorname{Set}^{\mathbb{F}}$ ;  $(\delta A)(n) = A(n+1)$ 

 $\triangleright$  Binding signature  $\Sigma_{\lambda}$  for  $\lambda$ -terms

$$oldsymbol{\lambda} : \langle 1 
angle, \qquad @ : \langle 0, 0 
angle$$

 $\triangleright$  Carrier: the presheaf  $\Lambda$  of all  $\lambda$ -terms

 $\Lambda(n) = \{t \mid n \vdash t\}$  $\Lambda(\rho) : \Lambda(m) \to \Lambda(n)$  renaming on  $\lambda$ -terms for  $\rho : m \to n$  in  $\mathbb{F}$ .

 $\triangleright$  Forms a  $\mathbf{V} + \boldsymbol{\Sigma}_{\lambda}$ -algebra

$$\begin{array}{cccc} \operatorname{var}^{\Lambda}: \mathrm{V} \to \Lambda & @^{\Lambda}: \Lambda \times \Lambda \to \Lambda & \lambda^{\Lambda} & :\delta\Lambda & \to \Lambda \\ i & \mapsto i & s \ , \ t & \mapsto s @t & \lambda^{\Lambda}(n): \Lambda(n+1) \to \Lambda(n) \\ & t & \mapsto \lambda n + 1.t \end{array}$$

 $\triangleright$  Presheaf of variables:  $\mathbf{V} \in \mathbf{Set}^{\mathbb{F}}; \mathbf{V}(n) = \{1, \dots, n\}$ 

 $\triangleright$  Thm.  $\Lambda$  (= T<sub> $\Sigma$ </sub>V) is an initial V +  $\Sigma_{\lambda}$ -algebra.

#### Second-Order Abstract Syntax

- ▷ Abstract syntax with variable binding
- ▷ Metavariables with arities
- Substitutions (Metavars, object vars)

### Models of Secound-Order Abstract Syntax: $\Sigma$ -monoids

- $\triangleright$  A **<u>S</u>-monoid** [Fiore, Plotkin, Turi'99] is
  - a  $\Sigma$ -algebra A with
  - a monoid structure

$$\mathbf{V} \stackrel{\nu}{\longrightarrow} A \stackrel{\mu}{\longleftarrow} A \bullet A$$

in the monoidal category  $(\mathbf{Set}^{\mathbb{F}}, ullet, \mathbf{V})$ ,

- both are compatible.
- ⊳ Idea
  - Unit u models the embedding of variables
  - Multiplication  $\mu$  models substitution for object variables

Given a binding signature  $\boldsymbol{\Sigma}$ 

 $\triangleright~$  The presheaf of all  $\Sigma\text{-terms}$ 

$$\mathrm{T}_{\Sigma} \mathrm{V}(n) = \{t \ | \ n \ dash t\}$$

 $\triangleright$  Multiplication  $\mu : T_{\Sigma}V \bullet T_{\Sigma}V \to T_{\Sigma}V$ 

$$\mu_n^{(m)}(t;\ s_1,\ldots,s_m) riangleq t[1:=s_1,\ldots,n:=s_m]$$

(the substitution of  $\Sigma$ -terms for de Bruijn variables)

Given a binding signature  $\boldsymbol{\Sigma}$ 

 $\triangleright~$  The presheaf of all  $\Sigma\text{-terms}$ 

$$\mathrm{T}_{\Sigma} \mathrm{V}(n) = \{t \ | \ n \ dash t\}$$

15

 $\triangleright$  Multiplication  $\mu : T_{\Sigma}V \bullet T_{\Sigma}V \to T_{\Sigma}V$ 

$$\mu_n^{(m)}(t;\ s_1,\ldots,s_m) riangleq t[1:=s_1,\ldots,n:=s_m]$$

(the substitution of  $\Sigma$ -terms for de Bruijn variables)

- ▷ Thm. [Fiore, Plotkin, Turi'99]
  - $(T_{\Sigma}V, \nu, \mu)$  is an initial  $\Sigma$ -monoid.
  - $(T_{\Sigma}V, \nu)$  is an initial  $V + \Sigma$ -algebra.

How to model metavariables and substitutions for metavariables?

Given a binding signature  $\boldsymbol{\Sigma}$ 

 $\triangleright~$  The presheaf of all  $\Sigma\text{-terms}$ 

$$\mathrm{T}_{\Sigma} \mathrm{V}(n) = \{t \ | \ n \ dash t\}$$

 $\triangleright$  Multiplication  $\mu : T_{\Sigma}V \bullet T_{\Sigma}V \to T_{\Sigma}V$ 

$$\mu_n^{(m)}(t;\ s_1,\ldots,s_m) riangleq t[1:=s_1,\ldots,n:=s_m]$$

(the substitution of  $\Sigma$ -terms for de Bruijn variables)

- ▷ Thm. [Fiore, Plotkin, Turi'99]
  - $(T_{\Sigma}V, \nu, \mu)$  is an initial  $\Sigma$ -monoid.
  - $(T_{\Sigma}V, \nu)$  is an initial  $V + \Sigma$ -algebra.

How to model metavariables and substitutions for metavariables?

Free  $\Sigma$ -monoids [Hamana, APLAS'04]

#### $\triangleright$ A binding signature $\Sigma$

 $\triangleright$  Z is an N-indexed set of metavariables parameterised by arities:

 $Z(l) \triangleq \{ M \mid M^l, \text{ where } l \in \mathbb{N} \}.$ 

 $\triangleright$  Raw meta-terms generated by Z:

$$t ::= x ~\mid~ f(x_1 \cdots x_{i_1} \cdot t_1 \,, \ldots , \, x_1 \cdots x_{i_l} \cdot t_l) ~\mid~ \operatorname{M}[t_1, \ldots, t_l]$$

 $\triangleright$  A meta-term t is a raw meta-term derived from:

$$egin{aligned} rac{x \in n}{n dash x} & rac{f: \langle i_1, \dots, i_l 
angle \in \Sigma \quad n+i_1 dash t_1 \cdots n+i_l dash t_l}{n dash f(n+1 \dots n+i_1.t_1, \ \dots, \ n+1 \dots n+i_l.t_l \ )} \ & rac{\mathrm{M} \in Z(l) \quad n dash t_1 \ \dots \ n dash t_l}{n dash \mathrm{M}[t_1, \dots, t_l]} \end{aligned}$$

 $\triangleright$  Presheaf  $M_{\Sigma}Z \in \mathbf{Set}^{\mathbb{F}}$ 

$$M_\Sigma Z(n) = \{t \ | \ n \ dash t\}$$

17

 $Desiremath{\triangleright}\ \mathbf{V}\!+\!\Sigma$ -algebra  $(M_\Sigma Z, [
u, f_T]_{f\in\Sigma})$ 

$$egin{aligned} & 
u(n): \mathrm{V}(n) \longrightarrow M_\Sigma Z(n), \ & x \longmapsto x \ & f^T: \delta^{i_1} M_\Sigma Z imes \cdots imes \delta^{i_l} M_\Sigma Z \longrightarrow M_\Sigma Z \ & (t_1, \dots, t_l) \longmapsto f(n + \overline{i_1}.t_1, \dots, n + \overline{i_l}.t_l). \end{aligned}$$

 $\triangleright$  Multiplication  $\mu: M_{\Sigma}Z \bullet M_{\Sigma}Z \to M_{\Sigma}Z$ 

$$t, \hspace{0.3cm} \overline{s} \hspace{0.1cm} \longmapsto \hspace{0.1cm} t[1:=s_1, \ldots, n:=s_n]$$

••• substitution of meta-terms for object variables

### Free $\Sigma$ -monoids: Syntax with Metavariables [Hamana, APLAS'04]

Thm.  $(M_{\Sigma}Z, \nu, \mu)$  forms a free  $\Sigma$ -monoid over Z.

 $\triangleright$  Freeness of  $M_{\Sigma}Z$ : in **Set**<sup> $\mathbb{F}$ </sup>, given assignment  $\theta$ 



 $\triangleright$  The unique  $\Sigma$ -monoid morphism  $\theta^{\sharp}$  that extends  $\theta$ .

#### Instance: Substitution for Metavariables

Case  $A = T_{\Sigma}V$   $\cdots$  a  $\Sigma$ -monoid of terms,  $Z \xrightarrow{\eta_Z} M_{\Sigma}Z$   $\downarrow \exists ! \theta^{\sharp} \quad \Sigma$ -monoid morphism  $T_{\Sigma}V$ 

 $\triangleright \theta^{\sharp}$  is a substitution of terms for metavariables Z

 $\triangleright$  E.g.  $\Sigma$ : signature for  $\lambda$ -terms, for  $\theta(M^{(1)}) = a@a$ 

$$heta^{\sharp}(\ \lambda(x.\mathrm{M}[x]@y)\ )=\lambda(\ x.(x@x)@y\ )$$

- $\triangleright$  Other examples of  $\Sigma$ -monoid A:
  - $M_{\Sigma}Z$ : meta-substitution: substitution of meta-terms for metavars
  - Any  $\Sigma$ -monoid as a model  $\theta^{\sharp}$  is compositional interpretation

### Eg. A transformation to prenex normal forms

 $\mathsf{P} \land \forall (x.\mathsf{Q}[x]) \ o \forall (x.\mathsf{P} \land \mathsf{Q}[x]) \ o \forall (x.\mathsf{Q}[x]) \ o \exists (x. \lnot (\mathsf{Q}[x]))$ 

20

### Def.

Rewrite rules  $\mathcal{R}$   $l \to r$  on meta-terms  $M_{\Sigma}Z$ 

(with some syntactic conditions)

Rewrite relation  $\rightarrow_{\mathcal{R}}$  on terms  $T_{\Sigma}V$ 

 $rac{l 
ightarrow r \in \mathcal{R}}{ heta^{\sharp}(l) 
ightarrow_{\mathcal{R}} heta^{\sharp}(r)} \quad rac{s 
ightarrow_{\mathcal{R}} t}{f(\dots, \overline{x}.s, \dots) 
ightarrow_{\mathcal{R}} f(\dots, \overline{x}.t, \dots)}$ 

 $\triangleright$  Substitution  $\theta: Z \rightarrow T_{\Sigma}V$  maps metavariables to terms

▷ NB. rewriting is defined on terms (without metavars)

### Presheaf with relation $(A, >_A)$

Def. A presheaf  $A \in \mathbf{Set}^{\mathbb{F}}$  is equipped with a binary relation  $>_A$ , if

21

- 1.  $>_A$  is a family  $\{>_{A(n)}\}_{n\in\mathbb{F}}$ ,
- 2. which is compatible with presheaf action.

(for all  $a, b \in A(m)$  and  $\rho : m \to n$  in  $\mathbb{F}$ , if  $a >_{A(m)} b$ , then  $A(\rho)(a) >_{A(n)} A(\rho)(b)$ .) Def. A monotone V+ $\Sigma$ -algebra  $(A, >_A)$  is a V+ $\Sigma$ -algebra  $(A, [\nu, f^A]_{f \in \Sigma})$ 

- $\triangleright$  equipped with a relation  $>_A$  such that
- $\triangleright$  every operation  $f^A$  is monotone.

Thm.  $(T_{\Sigma}V, \rightarrow_{\mathcal{R}})$  is a monotone  $V + \Sigma$ -algebra.

Models of Rewrite System  $\mathcal{R}$ : (V+ $\Sigma$ ,  $\mathcal{R}$ )-algebras

A  $(V + \Sigma, \mathcal{R})$ -algebra  $(A, >_A)$  is a monotone  $V + \Sigma$ -algebra satisfying all rules in  $\mathcal{R}$  as:



Prop.  $s \rightarrow_{\mathcal{R}} t$ 

 $\Leftrightarrow$ 

 $!_A(s) >_A !_A(t)$  for all  $(V + \Sigma, \mathcal{R})$ -algebras A, assignments  $\theta$ .

*Proof.* [ $\Rightarrow$ ]: By induction of the proof of rewrite. [ $\Leftarrow$ ]: Take  $(A, >_A) = (T_{\Sigma}V, \rightarrow_{\mathcal{R}})$ .

### Complete Characterisation of Terminating Second-Order Rewriting

**Thm.** A second-order rewriting system  $\mathcal{R}$  is terminating iff there is a well-founded  $(V + \Sigma, \mathcal{R})$ -algebra  $(A, >_A)$ .

*Proof.* ( $\Leftarrow$ ): Suppose a well-founded (V+ $\Sigma$ ,  $\mathcal{R}$ )-algebra (A, ><sub>A</sub>). Assume  $\mathcal{R}$  is non-terminating:

$$t_1 \rightarrow_{\mathcal{R}} t_2 \rightarrow_{\mathcal{R}} \cdots$$

By soundness,

$$!_A(t_1) >_{A(n)} !_A(t_2) >_A \cdots$$

Contradiction.

 $(\Rightarrow)$ : When  $\mathcal{R}$  is terminating, the  $(V+\Sigma, \mathcal{R})$ -algebra  $(T_{\Sigma}V, \rightarrow_{\mathcal{R}})$  is a well-founded algebra.

Because of the algebraic chatersiations of abstract sytanx with binding [FPT'99] and meta-terms [H.04]

$$egin{aligned} & \mathbb{P} \wedge orall (x.\mathbb{Q}[x]) & \to \forall (x.\mathbb{P} \wedge \mathbb{Q}[x]) & \neg \forall (x.\mathbb{Q}[x]) & \to \exists (x.\neg(\mathbb{Q}[x])) \ & \forall (x.\mathbb{Q}[x]) \wedge \mathbb{P} & \to \forall (x.\mathbb{Q}[x] \wedge \mathbb{P}) & \neg \exists (x.\mathbb{Q}[x]) & \to \forall (x.\neg(\mathbb{Q}[x])) \end{aligned}$$

Take a well-founded monotone  $V + \Sigma$ -algebra  $(K, >_K)$ where  $K(n) = \mathbb{N}$  with  $>_{K(n)} = >$  on  $\mathbb{N}$ .

#### Operations

$$egin{aligned} &
u_n^K(i) = 0 & \wedge_n^K\left(x,y
ight) = ee_n^K(x,y) = 2x+2y \ &
egg_n^K(x) = 2x & orall_n^K(x) = \exists_n^K(x) = x+1. \end{aligned}$$

 $(V+\Sigma, \mathcal{R})$ -algebra

$$egin{aligned} & ! heta_0^{\sharp}( extsf{P} \wedge orall (1. extsf{Q}[1])) = 2x + 2(y+1) >_{K(0)} (2x+2y) + 1 = ! heta_0^{\sharp}(orall (1. extsf{P} \wedge extsf{Q}[1])) \ & ! heta_0^{\sharp}(
eglines = 2(y+1) >_{K(0)} 2y + 1 = ! heta_0^{\sharp}(
eglines (1. extsf{Q}[1])). \end{aligned}$$

#### Summary

- ▷ Complete algebraic semantics of second-order rewriting systems
- Based on my paper
  - Complete Algebraic Semantics for Second-Order Rewriting Systems based on Abstract Syntax with Variable Binding
  - MSCS, CUP, 2022,
     Special Issue of John Power Festschrift



## Complete algebraic semantics for second-order rewriting systems based on abstract syntax with variable binding

 $\mathbf{27}$ 

Published online by Cambridge University Press: 14 October 2022

| Makoto Hamana 🔟                               | Show author details $\checkmark$ |
|-----------------------------------------------|----------------------------------|
| Article Metrics                               |                                  |
| Get access Share 66 Cite Rights & Permissions |                                  |

#### Abstract

By using algebraic structures in a presheaf category over finite sets, following Fiore, Plotkin and Turi, we develop sound and complete models of second-order rewriting systems called secondorder computation systems (CSs). Restricting the algebraic structures to those equipped with well-founded relations, we obtain a complete characterisation of terminating CSs. We also extend the characterisation to rewriting on meta-terms using the notion of  $\Sigma$  -monoid.

#### Keywords

|                | 1.1.1                                                                                                       |             |                  |                              |  |  |
|----------------|-------------------------------------------------------------------------------------------------------------|-------------|------------------|------------------------------|--|--|
| lerm rewriting | higher-order rewriting                                                                                      | termination | algebraic models | higher-order abstract syntax |  |  |
|                |                                                                                                             |             |                  |                              |  |  |
|                |                                                                                                             |             |                  |                              |  |  |
| Туре           | Special Issue: The Power Festschrift                                                                        |             |                  |                              |  |  |
| Information    | n <u>Mathematical Structures in Computer Science</u> , <u>Volume 32</u> , <u>Special Issue 4: The Power</u> |             |                  |                              |  |  |
|                | <u>Festschrift</u> , April 2022, pp. 542 - 573                                                              |             |                  |                              |  |  |
|                |                                                                                                             |             |                  |                              |  |  |

#### Summary

- ▷ Complete algebraic characterisation of second-order rewriting systems
- ▷ using algebraic models of second-order abstrax syntax

#### **Further Topics and Applications**

- $\triangleright$  Meta-rewriting: rewriting on meta-terms using monotone  $\Sigma$ -monoids
- ▶ Modularity of Termination for Second-Order rewriting [H. LMCS'21]
   A: terminating & B terminating ⇒ A ⊎ B : terminating
   with several conditions
- **Tool SOL** for termination and confluence checking 1st places in the Higher-order Category of
  - International Confluence Competition 2020
  - Termination Competition 2022
  - http://solweb.mydns.jp/webcui/sol/

#### Summary

- Complete algebraic semantics of second-order rewriting systems
- Based on my paper
  - Complete Algebraic Semantics for Second-Order Rewriting Systems based on Abstract Syntax with Variable Binding
  - MSCS, CUP, 2022, Special Issue of John Power Festschrift
- ▷ Short history: I visted LFCS, Edinburgh in 1999-2000 as a JSPS postdoc.
- Thanks to John Power, Gordon Plotkin



Abstract By using algebraic structures in a presheaf category over finite sets, following Fiore, Plotkin and Turi, we develop sound and complete models of second-order rewriting systems called secondorder computation systems (CSs). Restricting the algebraic structures to those equipped with well-founded relations, we obtain a complete characterisation of terminating CSs. We also extend the characterisation to rewriting on meta-terms using the notion of  $\Sigma$  -monoid.

Rights & Permissions

#### Keywords

Metrics

A Share

66 Cite

| Term rewriting | higher-order rewriting                                                                                                       | termination | algebraic models | higher-order abstract syntax |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|------------------------------|--|--|
|                |                                                                                                                              |             |                  |                              |  |  |
| Туре           | Special Issue: The Power Festschrift                                                                                         |             |                  |                              |  |  |
| Information    | Mathematical Structures in Computer Science, Volume 32, Special Issue 4: The Power<br>Festschrift, April 2022, pp. 542 - 573 |             |                  |                              |  |  |

Show author details ~