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First-order Rewriting: Review
First-Order Term Rewriting System (TRS) R.:

fact(0) — S(0)

fact(S(x)) — fact(x) * S(x)
Rewrite steps:

fact(S(S(0))) => fact(S(0)) * S(S(0)) => (fact(0) * S(0)) * S(s(0))
=> (S(0) * S(0)) * S(S(0)) ==> S(s(0)) (normal form)

Fundametal problem
> Termination  (Strong Normalisation)

> How can we prove the termination of R7?



TRS: Sound and Complete Algebraic Characterisation

Thm. [Huet and Lankford'78]
A first-order term rewriting system R is terminating

<~

there exists a well-founded monotone X-algebra (A, >4) that
IS compatible with R.

Termination proof method
[<=] Find a well-founded monotone X-algebra that is compatible with R.



First-order Rewriting: Review
First-Order Term Rewriting System (TRS) R.:
fact(0) — S(0)
fact(S(x)) — fact(x) * S(x)

Semantics: well-founded monotone X-algebra (N, >) given by

factN(ac) = 2x + 2 rx y=x+y SN(:B) =2x +1 0" =1
Then it is compatible with R as

2 4 2 > 241 = SN0
22¢ +1)+2 > 2x+2x+1 = fact () * S (x)

fact" (0M)
fact'(S"(z))

Hence R is terminating.



Aim: Sound and Complete Algebraic Characterisation

Thm. [Huet and Lankford'78]
A first-order term rewriting system R is terminating

<~

there exists a well-founded monotone X-algebra A that
IS compatible with R.

> Aim: Extend this to second-order rewriting

> Give: Complete algebraic semantics of second-order rewriting



Example of Second-Order Rewriting : Prenex normal forms

PAV(z.Q[x]) — V(x.PAQ[x]) —V(x.Q[x]) — I(x.—(Q[x]))
V(x.Q[x])AP — V(x.Q[x]AP) —3(xz.Q[x]) — V(x.—(q[x]))
Signature: =, A, V,V, 3

Second-Order Rewriting System is defined on
Second-Order Abstract Syntax [Hamana’'04, Fiore LICS’'06]

> Abstract syntax with variable binding [Fiore, Plotkin, Turi LICS'99]
> Metavariables with arities (e.g. P,Q)

> Substitutions (Metavars, object vars)



Example: the X-calculus as a Second-Order Rewriting System

A(x.M[x]) @ N — M[N]
AM(xz.M@zx) > M

> Signhature: A, @



Abstract Syntax and Variable Binding [Fiore,Plotkin, Turi LICS'99]

> Aim: To model syntax with variable binding, e.g.

:B]_, ° o o o mn I_ t ml’ o o o o :Bn I_ S
ml’ooo’wn I_ :Bfi wl,ooo’wn I_t@s
m]_, e o o o mn, mn_|_]_ I_ t

L1y eeoseoqgln - A(azn_|_1.t)
> Syntax generated by 3 constructors

> A iS a special unary function symbol:
it decreases the context



Abstract Syntax and Variable Binding [Fiore,Plotkin, Turi LICS'99]

> Aim: model syntax with variable binding, e.g.

nkEEt n ks
n 2 n F tQs

n+1Ft
n - AX(n+ 1.t)

> Category F for variable contexts
objects: n = {1,...,n} (variable contexts)
arrows: all functions n — n/ (renamings)

> Presheaf category Set”
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Models of Syntax with Binding: X-Algebras in Set”

Def. A binding signature X is a set of function symbols with binding arities:
fi:{ny,...,ng)

which has I arguments and binds m; variables in the 2-th argument .
Def. A X-algebra A = (A, [f*],;c5) in Set" consists of
> carrier: a presheaf A € Set”

> operations: arrows of Set"

FAIMAX ...XMA—+ A
corresponding to function symbols f: (ni,...,n;) € X.

> Context extension: J§A € Set"; (§A)(n) = A(n + 1)

11



Example: A-terms
> Binding signature X, for A-terms
A (1), @ :(0,0)
> Carrier: the presheaf A of all A-terms

An)=4{t | n F t}

A(p) : A(m) — A(n) renaming on A-terms for p: m — m in F.

> Forms a V4 2>iy-algebra

vard : VoA @*:AXA—A AN LA —~ A
i —1 s, t —»s@ A'(n):A(n+1)— A(n)
t — An—+1.t

> Presheaf of variables: V € Set"; V(n) = {1,...,n}

> Thm. A (= TgV) is an initial V 4 Xy-algebra.
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Second-Order Abstract Syntax

> Abstract syntax with variable binding
> Metavariables with arities

> Substitutions (Metavars, object vars)

13



>

Models of Secound-Order Abstract Syntax: Y-monoids

A Y-monoid [Fiore, Plotkin, Turi’'99] is
— a X-algebra A with
— a monoid structure
V— A" AeA
in the monoidal category (SetF, o,V),

— both are compatible.

Idea
— Unit v models the embedding of variables

— Multiplication pu models substitution for object variables

14



Algebraic Characterisation of Syntax with Binding

Given a binding sighature X

> The presheaf of all X-terms
TsV(n) ={t | n + t}

> Multiplication @ : TV @ TV — T3V

(m)(t S1yeeeySm) = t[1:= s1,...

(the substitution of X-terms for de Bruijn variables)

s TV 1= Spm]
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Algebraic Characterisation of Syntax with Binding
Given a binding signature X
> The presheaf of all 3-terms
TsV(n) ={t | n + t}
> Multiplication @ : TV @ TV — T3V
u,slm)(t; Sl1yeeesSm) = t[1:=81,...,1 := 8]

(the substitution of X-terms for de Bruijn variables)

> Thm. [Fiore, Plotkin, Turi'99]
— (TeV, v, p) is an initial 3-monoid.

— (TxV, v) is an initial V 4 X-algebra.

» How to model metavariables and substitutions for metavariables?
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Algebraic Characterisation of Syntax with Binding

Given a binding sighature X

> The presheaf of all X-terms

TsV(n) ={t | n + t}

> Multiplication @ : TV @ TV — T3V

u,slm)(t; Sl1yeeesSm) = t[1:=81,...,1 := 8]
(the substitution of X-terms for de Bruijn variables)

> Thm. [Fiore, Plotkin, Turi'99]
— (TeV, v, p) is an initial 3-monoid.

— (TxV, v) is an initial V 4 X-algebra.

» How to model metavariables and substitutions for metavariables?

» Free 3¥-monoids [Hamana, APLAS'04]

15



Meta-terms: Terms with Metavariables [Aczel '78]

> A binding signature X
> Z is an N-indexed set of metavariables parameterised by arities:
Z(@1) £ {M | M', where I € N}.
> Raw meta-terms generated by Z:
tu=ao | f(e1- - xipt1,..., 1+ xip.ty) | M[t1,..., 1]

> A meta-term t is a raw meta-term derived from:

r En fi:{t1,...,) €EX n+t+i1 Hty -+« n+4 H

n nktf(nt+tl...n+t1.t1, ..., n+1...n+4+14.t;)

MeZ(l) nkEty ---n k1t
n |_M[t1,...,tl]
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Meta-terms: Terms with Metavariables
> Presheaf MxZ € Set"
MsZ(n)={t | n -t}
> V43-algebra (MxZ, [v, fr]rex)

v(n): V(n) —— MxZ(n),
rhH——x

16" MsZxX -+ X 8"MsZ — MsZ

(t1y--.5t1) —— .f(n_l'a-tla SRR n_l'z_ltl)

> Multiplication pu : MsZ e MxZ — MxZ2
t, S b+—— t[l:=81,...,1 1= 8Sy]

- substitution of meta-terms for object variables
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Free X-monoids: Syntax with Metavariables [Hamana, APLAS'04]

Thm. (MxsZ, v, ) forms a free 3-monoid over Z.
> Freeness of M»Z: in SetF, given assignment 6

z %2 Nz

319"  >-monoid morphism

Y

A >-monoid

> The unique X-monoid morphism 6% that extends 6.

18
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Instance: Substitution for Metavariables

Case A =TV ... a X-monoid of terms,
z— % nroz
X J19* >-monoid morphism
TSV

> 6% is a substitution of terms for metavariables Z
> E.g. X: signature for A-terms, for 6(M®Y)) = a@a

0% ( A(z.M[z]@y) ) = A( z.(z@z)@y )
> Other examples of ¥-monoid A:

— MsZ: meta-substitution: substitution of meta-terms for metavars

— Any X-monoid as a model — 0% is compositional interpretation



Second-Order Rewriting System

Eg. A transformation to prenex normal forms

PAV(z.Q[z]) — V(z.PAQ[xz]) —V(z.Qx]) — I(x.—(Q[x]))

Def.
Rewrite rules R I — r» on meta-terms M2

(with some syntactic conditions)

Rewrite relation —x on terms TV

l—>r€R S —m R t
') —r O8r) f(-..,Z.8,...) =R F(...,Z.t,...)

> Substitution 6 : Z — TV maps metavariables to terms

> NB. rewriting is defined on terms (without metavars)

20



Presheaf with relation (A, > 4)

Def. A presheaf A € Set” is equipped with a binary relation > 4, if

1. >4 is a family {>A(n)}n€]F;

2. which is compatible with presheaf action.

(for all a,b € A(m) and p: m — n in F,
T a > agm) b, then A(p)(@) > a(m) A(p)(5).)
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Monotone Algebra

Def. A monotone V+3X-algebra (A, >4) is a V4+X-algebra (A, [v, f4]sex)
> equipped with a relation >4 such that

> every operation fA IS monotone.

Thm. (TxV, —x ) is a monotone V + 3X-algebra.
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Models of Rewrite System R: (V+3X, R)-algebras

A (V+3,R)-algebra (A, >4) is @ monotone V4 3-algebra satisfying all rules in R as:

Nz

Z - M2 Il —-reR -+« a rule
p Hﬂ a unique >-monoid mor. extends 0
initial V4 3-algebra TxV Of,b(l) —R Bi(r) .+« a rewrite

A a unique V +X-algebra homomor.

V + 3-algebra A !Aefl(l) > A(n) !ABEL(l) .+« an interpretation



Soundness and Completeness of Models

Prop. s —-pr t

<~
'a(s) >a 'a(t) for all (V43,R)-algebras A, assignments 6.

Proof. [=-]: By induction of the proof of rewrite.

[<=I:

Take (A, >4) = (T&V, —-r ).
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Complete Characterisation of Terminating Second-Order Rewriting

Thm. A second-order rewriting system R is terminating
iff there is a well-founded (V+3, R)-algebra (A, >4a).

Proof. (<=): Suppose a well-founded (V+3, R)-algebra (A, >a).

Assume R Is non-terminating:
ti »>r t2 —Rr
By soundness,
ta(t1) >am) la(t2) >a---

Contradiction.

(=): When R is terminating, the (V+3, R)-algebra (ITxV, —x ) is a well-founded algebra.

» Because of the algebraic chatersiations of abstract sytanx with binding [FPT'99] and
meta-terms [H.04]
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Application: Termination by Interpretation

PAV(z.Q[x]) — V(x.PAQ[x]) —V(x.Q[x]) — I(x.—(Q[x]))
V(x.Q[x])AP — V(x.Q[x]AP) —3(xz.Q[x]) — V(x.—(q[x]))

Take a well-founded monotone V 4 3X-algebra (K, > k)
where K(n) = N with > g,y = > on N.

Operations

v,,If(z) =0 /\,,If (x,y) = \/,,If(a:, y) = 2x + 2y
K (x) = 2@ vE(z) = 3% (z) = = + 1.

(V+2,R)-algebra

105(P A V(1.Q[1])) = 2x + 2(y + 1) > k(o) (2 + 2y) + 1 =164(V(1.P A Q[1]))
168 (—3(1.Q[1])) = 2(y + 1) >k() 2y + 1 =105(V(1.7(Q[1]))).



Summary
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Summary

> Complete algebraic characterisation of second-order rewriting systems

> using algebraic models of second-order abstrax syntax

Further Topics and Applications

> Meta-rewriting: rewriting on meta-terms using monotone >-monoids

> Modularity of Termination for Second-Order rewriting [H. LMCS’'21]
A: terminating & B terminating = A W B : terminating
with several conditions

> Tool SOL for termination and confluence checking
1st places in the Higher-order Category of

— International Confluence Competition 2020
— Termination Competition 2022

http://solweb.mydns. jp/webcui/sol/
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