
1

Complete Algebraic Semantics for

Second-Order Rewriting Systems

based on

Abstract Syntax with Variable Binding

Makoto Hamana

Faculty of Informatics, Gunma University, Japan

SYCO 10

19th December, 2022, Edinburgh

2

This Talk

B Complete algebraic semantics of second-order rewriting

B Based on my paper

– Complete Algebraic Semantics for Second-Order Rewriting Systems based on

Abstract Syntax with Variable Binding

– MSCS, CUP, 2022,

Special Issue of John Power Festschrift

3

First-order Rewriting: Review

First-Order Term Rewriting System (TRS) R:

fact(0) → S(0)

fact(S(x)) → fact(x) ∗ S(x)
Rewrite steps:

fact(S(S(0))) => fact(S(0)) * S(S(0)) => (fact(0) * S(0)) * S(S(0))

=> (S(0) * S(0)) * S(S(0)) ==> S(S(0)) (normal form)

Fundametal problem

B Termination (Strong Normalisation)

B How can we prove the termination of R?

4

TRS: Sound and Complete Algebraic Characterisation

Thm. [Huet and Lankford’78]

A first-order term rewriting system R is terminating

⇔

there exists a well-founded monotone Σ-algebra (A, >A) that

is compatible with R.

Termination proof method

[⇐] Find a well-founded monotone Σ-algebra that is compatible with R.

5

First-order Rewriting: Review

First-Order Term Rewriting System (TRS) R:

fact(0) → S(0)

fact(S(x)) → fact(x) ∗ S(x)

Semantics: well-founded monotone Σ-algebra (N, >) given by

fact
N
(x) = 2x + 2 x ∗N

y = x + y S
N
(x) = 2x + 1 0

N
= 1

Then it is compatible with R as

factN(0N) = 2 + 2 > 2 + 1 = SN(0N)

factN(SN(x)) = 2(2x + 1) + 2 > 2x + 2x + 1 = factN(x) ∗ SN(x)

Hence R is terminating.

6

Aim: Sound and Complete Algebraic Characterisation

Thm. [Huet and Lankford’78]

A first-order term rewriting system R is terminating

⇔

there exists a well-founded monotone Σ-algebra A that

is compatible with R.

B Aim: Extend this to second-order rewriting

B Give: Complete algebraic semantics of second-order rewriting

7

Example of Second-Order Rewriting : Prenex normal forms

p∧∀(x.q[x]) → ∀(x.p∧q[x]) ¬∀(x.q[x]) → ∃(x.¬(q[x]))

∀(x.q[x])∧p → ∀(x.q[x]∧p) ¬∃(x.q[x]) → ∀(x.¬(q[x]))

Signature: ¬, ∧, ∨, ∀, ∃

Second-Order Rewriting System is defined on

Second-Order Abstract Syntax [Hamana’04, Fiore LICS’06]

B Abstract syntax with variable binding [Fiore, Plotkin, Turi LICS’99]

B Metavariables with arities (e.g. p,q)

B Substitutions (Metavars, object vars)

8

Example: the λ-calculus as a Second-Order Rewriting System

λ(x.M[x]) @ N → M[N]

λ(x.M @ x) → M

B Signature: λ, @

9

Abstract Syntax and Variable Binding [Fiore,Plotkin,Turi LICS’99]

B Aim: To model syntax with variable binding, e.g.

x1, . . . , xn ` xi

x1, . . . , xn ` t x1, . . . , xn ` s

x1, . . . , xn ` t@s

x1, . . . , xn, xn+1 ` t

x1, . . . , xn ` λ(xn+1.t)

B Syntax generated by 3 constructors

B λ is a special unary function symbol:

it decreases the context

10

Abstract Syntax and Variable Binding [Fiore,Plotkin,Turi LICS’99]

B Aim: model syntax with variable binding, e.g.

n ` i

n ` t n ` s

n ` t@s

n + 1 ` t

n ` λ(n + 1.t)

B Category F for variable contexts

objects: n = {1, . . . , n} (variable contexts)

arrows: all functions n → n′ (renamings)

B Presheaf category SetF

11

Models of Syntax with Binding: Σ-Algebras in SetF

Def. A binding signature Σ is a set of function symbols with binding arities:

f : 〈n1, . . . , nl〉

which has l arguments and binds ni variables in the i-th argument .

Def. A Σ-algebra A = (A, [fA]f∈Σ) in SetF consists of

B carrier: a presheaf A ∈ SetF

B operations: arrows of SetF

f
A

: δ
n1A × . . . × δ

nlA - A

corresponding to function symbols f : 〈n1, . . . , nl〉 ∈ Σ.

B Context extension: δA ∈ SetF; (δA)(n) = A(n + 1)

12

Example: λ-terms

B Binding signature Σλ for λ-terms

λ : 〈1〉, @ : 〈0, 0〉

B Carrier: the presheaf Λ of all λ-terms

Λ(n) = {t | n ` t}

Λ(ρ) : Λ(m) → Λ(n) renaming on λ-terms for ρ : m → n in F.

B Forms a V+Σλ-algebra

varΛ : V → Λ @Λ : Λ × Λ → Λ λΛ : δΛ → Λ

i 7→ i s , t 7→ s@t λΛ(n) : Λ(n + 1) → Λ(n)

t 7→ λn+1.t

B Presheaf of variables: V ∈ SetF; V(n) = {1, . . . , n}

B Thm. Λ (= TΣV) is an initial V + Σλ-algebra.

13

Second-Order Abstract Syntax

B Abstract syntax with variable binding

B Metavariables with arities

B Substitutions (Metavars, object vars)

14

Models of Secound-Order Abstract Syntax: Σ-monoids

B A Σ-monoid [Fiore, Plotkin, Turi’99] is

– a Σ-algebra A with

– a monoid structure

V
ν - A ¾µ

A • A

in the monoidal category (SetF, •, V),

– both are compatible.

B Idea

– Unit ν models the embedding of variables

– Multiplication µ models substitution for object variables

15

Algebraic Characterisation of Syntax with Binding

Given a binding signature Σ

B The presheaf of all Σ-terms

TΣV(n) = {t | n ` t}

B Multiplication µ : TΣV • TΣV → TΣV

µ
(m)
n (t; s1, . . . , sm) , t[1 := s1, . . . , n := sm]

(the substitution of Σ-terms for de Bruijn variables)

15

Algebraic Characterisation of Syntax with Binding

Given a binding signature Σ

B The presheaf of all Σ-terms

TΣV(n) = {t | n ` t}

B Multiplication µ : TΣV • TΣV → TΣV

µ
(m)
n (t; s1, . . . , sm) , t[1 := s1, . . . , n := sm]

(the substitution of Σ-terms for de Bruijn variables)

B Thm. [Fiore, Plotkin, Turi’99]

– (TΣV, ν, µ) is an initial Σ-monoid.

– (TΣV, ν) is an initial V + Σ-algebra.

I How to model metavariables and substitutions for metavariables?

15

Algebraic Characterisation of Syntax with Binding

Given a binding signature Σ

B The presheaf of all Σ-terms

TΣV(n) = {t | n ` t}

B Multiplication µ : TΣV • TΣV → TΣV

µ
(m)
n (t; s1, . . . , sm) , t[1 := s1, . . . , n := sm]

(the substitution of Σ-terms for de Bruijn variables)

B Thm. [Fiore, Plotkin, Turi’99]

– (TΣV, ν, µ) is an initial Σ-monoid.

– (TΣV, ν) is an initial V + Σ-algebra.

I How to model metavariables and substitutions for metavariables?

I Free Σ-monoids [Hamana, APLAS’04]

16

Meta-terms: Terms with Metavariables [Aczel ’78]

B A binding signature Σ

B Z is an N-indexed set of metavariables parameterised by arities:

Z(l) , {M | M
l
, where l ∈ N}.

B Raw meta-terms generated by Z:

t ::= x | f(x1 · · · xi1.t1 , . . . , x1 · · · xil.tl) | M[t1, . . . , tl]

B A meta-term t is a raw meta-term derived from:

x ∈ n

n ` x

f : 〈i1, . . . , il〉 ∈ Σ n+i1 ` t1 · · · n+il ` tl

n ` f(n+1 . . . n+i1.t1, . . . , n+1 . . . n+il.tl)

M ∈ Z(l) n ` t1 · · · n ` tl

n ` M[t1, . . . , tl]

17

Meta-terms: Terms with Metavariables

B Presheaf MΣZ ∈ SetF

MΣZ(n) = {t | n ` t}

B V+Σ-algebra (MΣZ, [ν, fT]f∈Σ)

ν(n) : V(n) - MΣZ(n),

x - x

f
T

: δ
i1MΣZ× · · · × δ

ilMΣZ - MΣZ

(t1, . . . , tl) - f(n+i1.t1, . . . , n+il.tl).

B Multiplication µ : MΣZ • MΣZ → MΣZ

t, s - t[1 := s1, . . . , n := sn]

· · · substitution of meta-terms for object variables

18

Free Σ-monoids: Syntax with Metavariables [Hamana, APLAS’04]

Thm. (MΣZ, ν, µ) forms a free Σ-monoid over Z.

B Freeness of MΣZ: in SetF, given assignment θ

Z
ηZ- MΣZ

@
@

@
@

@
θ

R

Σ-monoid morphism

A

∃! θ]

?
Σ-monoid

B The unique Σ-monoid morphism θ] that extends θ.

19

Instance: Substitution for Metavariables

Case A = TΣV · · · a Σ-monoid of terms,

Z
ηZ- MΣZ

@
@

@
@θ R

Σ-monoid morphism

TΣV

∃! θ]

?

B θ] is a substitution of terms for metavariables Z

B E.g. Σ: signature for λ-terms, for θ(M(1)) = a@a

θ
]
(λ(x.M[x]@y)) = λ(x.(x@x)@y)

B Other examples of Σ-monoid A:

– MΣZ: meta-substitution: substitution of meta-terms for metavars

– Any Σ-monoid as a model – θ] is compositional interpretation

20

Second-Order Rewriting System

Eg. A transformation to prenex normal forms

p∧∀(x.q[x]) → ∀(x.p∧q[x]) ¬∀(x.q[x]) → ∃(x.¬(q[x]))

Def.
Rewrite rules R l → r on meta-terms MΣZ

(with some syntactic conditions)

Rewrite relation →R on terms TΣV

l → r ∈ R
θ](l) →R θ](r)

s →R t

f(. . . , x.s, . . .) →R f(. . . , x.t, . . .)

B Substitution θ : Z → TΣV maps metavariables to terms

B NB. rewriting is defined on terms (without metavars)

21

Presheaf with relation (A, >A)

Def. A presheaf A ∈ SetF is equipped with a binary relation >A, if

1. >A is a family {>A(n)}n∈F,

2. which is compatible with presheaf action.

(for all a, b ∈ A(m) and ρ : m → n in F,

if a >A(m) b, then A(ρ)(a) >A(n) A(ρ)(b).)

22

Monotone Algebra

Def. A monotone V+Σ-algebra (A, >A) is a V+Σ-algebra (A, [ν, fA]f∈Σ)

B equipped with a relation >A such that

B every operation fA is monotone.

Thm. (TΣV, →R) is a monotone V+Σ-algebra.

23

Models of Rewrite System R: (V+Σ, R)-algebras

A (V+Σ, R)-algebra (A, >A) is a monotone V+Σ-algebra satisfying all rules in R as:

Z
ηZ - MΣZ l → r ∈ R · · · a rule

@
@

@
@

@
@

θ

R

a unique Σ-monoid mor. extends θ

initial V+Σ-algebra TΣV

θ]

?
θ

]
n(l) →R θ

]
n(r) · · · a rewrite

a unique V+Σ-algebra homomor.

V+Σ-algebra A

!A

?
!Aθ

]
n(l) >A(n) !Aθ

]
n(l) · · · an interpretation

24

Soundness and Completeness of Models

Prop. s →R t

⇔

!A(s) >A !A(t) for all (V+Σ, R)-algebras A, assignments θ.

Proof. [⇒]: By induction of the proof of rewrite.

[⇐]: Take (A, >A) = (TΣV, →R).

25

Complete Characterisation of Terminating Second-Order Rewriting

Thm. A second-order rewriting system R is terminating

iff there is a well-founded (V+Σ, R)-algebra (A, >A).

Proof. (⇐): Suppose a well-founded (V+Σ, R)-algebra (A, >A).

Assume R is non-terminating:

t1 →R t2 →R · · · .

By soundness,

!A(t1) >A(n) !A(t2) >A · · · .

Contradiction.

(⇒): When R is terminating, the (V+Σ, R)-algebra (TΣV, →R) is a well-founded algebra.

I Because of the algebraic chatersiations of abstract sytanx with binding [FPT’99] and

meta-terms [H.04]

26

Application: Termination by Interpretation

p∧∀(x.q[x]) → ∀(x.p∧q[x]) ¬∀(x.q[x]) → ∃(x.¬(q[x]))

∀(x.q[x])∧p → ∀(x.q[x]∧p) ¬∃(x.q[x]) → ∀(x.¬(q[x]))

Take a well-founded monotone V+Σ-algebra (K, >K)

where K(n) = N with >K(n) = > on N.

Operations

ν
K
n (i) = 0 ∧K

n (x, y) = ∨K
n (x, y) = 2x + 2y

¬K
n (x) = 2x ∀K

n (x) = ∃K
n (x) = x + 1.

(V+Σ,R)-algebra

!θ
]
0(p ∧ ∀(1.q[1])) = 2x + 2(y + 1) >K(0) (2x + 2y) + 1 =!θ

]
0(∀(1.p ∧ q[1]))

!θ
]
0(¬∃(1.q[1])) = 2(y + 1) >K(0) 2y + 1 =!θ

]
0(∀(1.¬(q[1]))).

27

Summary

B Complete algebraic semantics of second-order rewriting systems

B Based on my paper

– Complete Algebraic Semantics for Second-Order Rewriting Systems based on

Abstract Syntax with Variable Binding

– MSCS, CUP, 2022,

Special Issue of John Power Festschrift

29

Summary

B Complete algebraic characterisation of second-order rewriting systems

B using algebraic models of second-order abstrax syntax

Further Topics and Applications

B Meta-rewriting: rewriting on meta-terms using monotone Σ-monoids

B Modularity of Termination for Second-Order rewriting [H. LMCS’21]

A: terminating & B terminating ⇒ A] B : terminating

with several conditions

B Tool SOL for termination and confluence checking

1st places in the Higher-order Category of

– International Confluence Competition 2020

– Termination Competition 2022

http://solweb.mydns.jp/webcui/sol/

28

Summary

B Complete algebraic semantics of second-order rewriting systems

B Based on my paper

– Complete Algebraic Semantics for Second-Order Rewriting Systems based on

Abstract Syntax with Variable Binding

– MSCS, CUP, 2022,

Special Issue of John Power Festschrift

B Short history: I visted LFCS, Edinburgh

in 1999-2000 as a JSPS postdoc.

B Thanks to John Power, Gordon Plotkin

