
Science of Computer Programming 187 (2020) 102322
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Polymorphic computation systems: Theory and practice of
confluence with call-by-value

Makoto Hamana a,∗, Tatsuya Abe b, Kentaro Kikuchi c

a Department of Computer Science, Gunma University, Japan
b STAIR Lab, Chiba Institute of Technology, Japan
c Research Institute of Electrical Communication, Tohoku University, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 November 2018
Received in revised form 7 September 2019
Accepted 19 September 2019
Available online 17 October 2019

Keywords:
Polymorphism
λ-calculus
Type inference
Second-order algebraic theory
Confluence

We present a new framework of polymorphic computation rules that can accommodate a
distinction between values and non-values. It is suitable for analysing fundamental calculi
of programming languages. We develop a type inference algorithm and new criteria to
check the confluence property. These techniques are then implemented in our automated
confluence checking tool PolySOL. Its effectiveness is demonstrated through examination of
various calculi, including the call-by-need lambda-calculus, Moggi’s computational lambda-
calculus, and skew-monoidal categories.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

1.1. How to formalise a concrete calculus

Fundamental calculi of programming languages are often formulated as simply-typed computation rules. Describing such
a simply-typed system requires a schematic type notation that is best formulated in a polymorphically typed framework. To
illustrate this situation, consider the simply-typed λ-calculus as a sample calculus:

(β) � � (λxσ . M) N ⇒ M[x := N] : τ

An important point is that neither σ nor τ is a fixed type, but each is a schema of types. Therefore, (β) actually describes
a family of actual computation rules. It represents various instances of rules by varying σ and τ , such as the following.

(βbool,int) � � (λxbool. M) N ⇒ M[x := N] : int
(βint→int,bool) � � (λxint→int. M) N ⇒ M[x := N] : bool

From the viewpoint of meta-theory, as in a mechanised formalisation of mathematics, the (β)-rule should be formulated
in a polymorphically typed framework, where types τ and σ vary over simple types. This viewpoint has not been well
explored in the general theory of rewriting. For instance, no method has been established for checking the confluence
property of a general kind of polymorphically typed computation rules automatically.

* Corresponding author.
E-mail addresses: hamana@cs.gunma-u.ac.jp (M. Hamana), abet@stair.center (T. Abe), kentaro.kikuchi@riec.tohoku.ac.jp (K. Kikuchi).
https://doi.org/10.1016/j.scico.2019.102322
0167-6423/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2019.102322
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:hamana@cs.gunma-u.ac.jp
mailto:abet@stair.center
mailto:kentaro.kikuchi@riec.tohoku.ac.jp
https://doi.org/10.1016/j.scico.2019.102322
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2019.102322&domain=pdf

2 M. Hamana et al. / Science of Computer Programming 187 (2020) 102322
We were aware of this difficulty. Our earlier study [1] investigated the decidability of various program calculi by con-
fluence and termination checking. The type system used there was called molecular types, which was intended to mimic
polymorphic types in a simple type setting. However, this mimic setting provided no satisfactory framework to address poly-
morphic typed rules. For example, molecular types did not have a means of instantiating types by replacing type variables
with other types. Therefore, instantiation of (β) to (βbool,int)(βint→int,bool) described above was unobtainable. For that rea-
son, no confluence of instances of polymorphic computation rules is obtained automatically. Further manual meta-theoretic
analysis is necessary.

1.2. A new framework of polymorphic computation rules with values and non-values distinction

To resolve these issues, we present an extended framework for polymorphic computation rules herein. To make the
framework applicable to describing and analysing fundamental calculi of programming languages, we also introduce a dis-
tinction between values and non-values in the framework.

This framework is polymorphic and a computational refinement of second-order algebraic theories by Fiore et al. [2,
3]. Second-order algebraic theories have been shown to be a useful framework that models various important notions of
programming languages such as logic programming [4], algebraic effects [5], and quantum computation [6]. The present
polymorphic framework also has applications in these fields.

1.3. Differences from ordinary untyped rewriting systems

This new framework is not merely an instance of ordinary untyped rewriting systems [7–9]. One cannot simply apply
existing theory to the new typed framework. The framework introduces new features: polymorphic types and values/non-
values distinctions in the rule format. We provide suitable adaptation and extension of the theory and techniques of
rewriting.

1.3.1. Polymorphic typed rules and their confluence
The following examples underscore that the confluence property in the present setting differs from that in the untyped

setting. Let ck : a → bool be a polymorphic function symbol, where a is a type variable. Moreover, atomic types int, char,bool
and constants true, false are assumed. The following rules use different instances of the polymorphic function symbol ck.

(1) x : int � ckint→bool(x) ⇒ true : bool
(2) x : char � ckchar→bool(x) ⇒ false : bool

These formulate the function ck as a checking function of whether the type of the argument is of int or not. These are
written in our formal framework we introduce into §2. The system is confluent because there is no overlapping and it is
terminating.

However, the corresponding untyped rules are non-confluent. Forgetting types, we have the following rules as

(1) ck(x) ⇒ true
(2) ck(x) ⇒ false

where ck is a unary untyped function symbol. As one might expect, the untyped system is not confluent because ck(x) is
rewritten to two normal forms: true and false. This result shows that the types are important and that they affect the notion
of overlap between rules, which is a core notion of critical pair checking.

1.3.2. Values and non-values
The notion of values is important in programming languages. Not only call-by-value programming languages such as ML,

but functional programming languages having distinction of pure functions and effectful computations, such as Haskell, have
the notion of (pure) values.

Plotkin’s call-by-value λ-calculus [10] is the most fundamental λ-calculus having the notion of values. This λ-calculus is
defined by a version of β-reduction law as

(β) � � (λxσ . M) V ⇒ M[x := V] : τ

where V denotes a value that is either a variable or an abstraction

Values V ::= y | λw.M

Therefore, the metavariable V is only instantiated by a term in the particular subclass of terms, called values. The ordi-
nary theory of term rewriting does not allow such syntactic restrictions on the form of terms. Because the restriction of
terms reflects the notion of substitutions of terms for variables, we cannot apply the ordinary theory directly to investigate
confluence of call-by-value calculi. We will introduce the following new notions for it:

M. Hamana et al. / Science of Computer Programming 187 (2020) 102322 3
1. Overlaps for rules having metavariables for values and non-values (Definition 4.3)
2. Call-by-value joinability (Definition 4.5)
3. Meta-confluence and object confluence (§4.5)

The first two notions are necessary to establish confluence in the call-by-value setting. The third notion is important for
establishing confluence of object λ-calculi. Meta-confluence is a confluence property at the meta-level, i.e., confluence on
“terms with metavariables”, which are wider than the terms with no metavariables. In §6, it is explained that the poly-
morphic computation system of Moggi’s computational λ-calculus, the λC-calculus, is not meta-confluent. Nevertheless, its
object confluence can be proved using the notion of call-by-value joinability.

1.4. Example 1: confluence of the call-by-need λ-calculus

Examination of a sample confluence problem is useful to illustrate our framework and methodology. Here we consider
Maraist, Odersky, and Wadler’s call-by-need λ-calculus λneed [11]. Its simply-typed version is explained below. The λneed

has two classes of terms: values and non-values.

Values V ::= x | λx.M Non-values P ::= M@N | let x = M in N (1)

We now express the expression λx.M as lam(x.M) and let x = M in N as let(M,x.N). Then the computation rules of
λneed are described as shown below:

lmdNeed = [rule|
(G) let(M, x.N) => N
(I) lam(x.M[x]) @ N => let(N,x.M[x])
(V-v) let(V, x.C[x]) => C[V]
(C-v) let(V, x.M[x])@N => let(V, x.M[x]@N)
(A) let(let(L,x.M[x]), y.N[y]) => let(L,x.let(M[x],y.N[y])) |]

Descriptions “lmdNeed = [rule|” and “|]” present the beginning and end of the rule specification in our confluence
checker PolySOL. Here V is a metavariable for values. Also, M,N,C,L are metavariables for all terms.

Remark 1.1. The value metavariable V cannot be replaced with non-values. That is, V can only be replaced with vari-
ables or abstractions. This fundamental assumption is important for a formal description of a calculus having the notion of
values/non-values, such as the call-by-need λ-calculus and the computational λ-calculus (see §6). �

Next, confluence of the simply-typed λneed-calculus is proved. Confluence (CR) is a property of the reduction relation,
stating that any two divergent computation paths are finally joinable, as shown in the panel:

M
∗ ∗

M1

∗

CR M2

∗
N

The proof requires analysis of all possible situations that admit two ways of reductions, and also to check their convergence.
In the case of λneed , careful inspection of the rules reveals that it has, in all, seven patterns of such situations, as depicted
in Fig. 1. Next it is apparent that all of these patterns are convergent. Importantly, this finite number of checks is sufficient
to infer that all other infinite numbers of instances of the divergent situations are convergent. This property is called local
confluence, meaning that every possible one-step divergence is joinable. By applying Newman’s lemma [12,7], which states
that “termination and local confluence imply confluence”, we infer that λneed is confluent because termination (i.e. strong
normalisation) of λneed can be shown by a translation into a terminating λ-calculus, as Ohta et al. have described [13].
Therefore, we conclude that λneed is confluent.

This proof method is known as Knuth and Bendix’s critical pair checking [14]. The divergent terms in Fig. 1 are designated
as critical pairs because these show critical situations that may break confluence. A critical pair is obtained by an overlap
between two rules, which is computed using second-order unification [15]. For instance, an overlap exists between the rules
(V-v),(C-v) because their left-hand sides

let(V, x.C[x])
?= let(V’, x.M[x])

are unifiable by second-order unification with a unifier θ = {V �→ V’, C �→ x.M[x]}. The instantiated term let(V’,
x.M[x])@N by θ is the source of the divergence (4:) in Fig. 1, which admits reductions by the two rules (C-v),(V-v).

4 M. Hamana et al. / Science of Computer Programming 187 (2020) 102322
1: let(V’,x.N)

(G) (V-v)

N = N

2: lam(x.let(let(L’,x’.M’[x’]),x.N)

(G) (A)

N let(L’,x.let(M’[x],y.N)

3: let(V,x.N’)@N

(C-v) (G)

let(V,x.(N’@N)) N’@N

4: let(V’,x.M[x])@N

(C-v) (V-v)

let(V’,x.(M[x]@N)) M[V’]@N

5: let(let(L,x.N’),y.N[y])

(A) (G)

let(L,x.let(N’,y.N[y])) let(N’,y.N[y])

6: let(let(V’,x.M[x]),y.N[y])

(A) (V-v)

let(V’,x.let(M[x],y.N[y])) let(M[V’],y.N[y])

7: let(let(let(L’,x’.M’[x’]),x.M[x]),y.N[y])

(A) (A)

let(let(L’,x’.M’[x’]),x.let(M[x],y.N[y]))

∗

let(let(L’,x’.let(M’[x’],y’.M[y’])),y.N[y])

∗
·

Fig. 1. Critical pairs of λneed-calculus.

Nevertheless, some difficulties arise. In computing the critical pairs of λneed in Fig. 1, the classical critical pair method
is not applicable. Actually, suitable extensions of the method are required. In the following herein, we list the problems,
related questions, and the answers we obtained.

Problem 1. The notion of a unifier for an overlap is non-standard in the call-by-value case. For example, the left-hand sides
of (V-v) and (A) appear to be overlapped, but actually they are not. A candidate unifier V �→ let(L,x.M[x]), C �→
y.N[y] is not correct because V is a value, whereas let(L,x.M[x]) is a non-value.

Q1. What is a general definition of overlaps in the call-by-value setting?

Problem 2. Different occurrences of the same function symbol might have different types.
For example, in (A), each let has actually a different type (highlighted one) as

M : c → a, N : a → b, L : c �
� � let a, (a → b) → b(let c, (c → a) → a(L, xc .M[x]), ya.N[y]) ⇒ let c, (c → b) → b(L, xc .let a, (a → b) → b(M[x], ya.N[y])) : b

Computing an overlap between let-terms demands adjustment of the types of let to equate them.

Q2. What should be the notion of unification between polymorphic second-order terms?

Moreover, specifying all the type annotations as described above manually is tedious in practice. Ideally, we write a
“plain” rule as (A), and expect that some system infers the type annotations automatically.

Q3. What is the type inference algorithm for polymorphic second-order computation rules?
As described in this paper, we solve these questions.

A1. We introduce a validation predicate on substitutions (Definition 2.5) to check value/non-value restrictions of the term
structures. It is used for formulating computation steps in call-by-value and overlaps between rules.
Moreover, we reformulate the notion of overlaps to compute critical pairs in call-by-value (Definition 4.3), and introduce
the notion of call-by-value joinability (Definition 4.5) of critical pairs.

A2. We formulate the notion of a unifier for call-by-value polymorphic terms (Definition 4.1).
A3. We give a type inference algorithm for polymorphic computation rules in Fig. 4.

M. Hamana et al. / Science of Computer Programming 187 (2020) 102322 5
1.5. Critical pair checking using the tool PolySOL

Based on the above answers, we have implemented these features in our tool PolySOL. PolySOL is a tool to check
confluence and termination of polymorphic second-order computation systems. The system works on top of the interpreter
of Glasgow Haskell Compiler. PolySOL uses the feature of quasi-quotation (i.e. [signature|..] and [rule|..] are
quasi-quotations) of Template Haskell [16], with a custom parser which provides a readable notation for signature, terms
and rules. It makes the language of our formal computation rules available within a Haskell script.

PolySOL first infers and checks the types of variables and terms in the computation rules using a given signature. To
check confluence of the simply-typed λneed-calculus, we declare the following signature in PolySOL:

sigNeed = [signature|
lam : (a -> b) -> Arr(a,b) ; app : Arr(a,b),a -> b
let : a,(a -> b) -> b |]

where a,b are type variables, and Arr(a,b) encodes the arrow type of the target λ-calculus in PolySOL. The rule set
lmdNeed given in the beginning of this section is actually a part of rule specification written using PolySOL’s language.
Using these, we can command PolySOL to perform critical pair checking.

*SOL> criCBV lmdNeed sigNeed
1: Overlap (G)-(V-v)--- M|-> V’, C’|-> z1.N ---------------------------------

(G) let(M,x.N) => N
(V-v) let(V’,x’.C’[x’]) => C’[V’]

let(V’,x.N)
N <-(G)-∧-(V-v)-> N
---> N =OK= N <---

2: Overlap (G)-(A)--- M|-> let(L’,x’.M’[x’]), N’|-> z1.N --------------------
(G) let(M,x.N) => N
(A) let(let(L’,x’.M’[x’]),y’.N’[y’]) => let(L’,x’.let(M’[x’],y’.N’[y’]))

let(let(L’,x’.M’[x’]),x.N)
N <-(G)-∧-(A)-> let(L’,xd3.let(M’[xd3],yd3.N))
---> N =OK= N <---

3: Overlap (C-v)-(G)--- M’|-> V, M|-> z1.N’ ---------------------------------
(C-v) let(V,x.M[x])@N => let(V,x.(M[x]@N))
(G) let(M’,x’.N’) => N’

let(V,x.N’)@N
let(V,x8.(N’@N)) <-(C-v)-∧-(G)-> N’@N

---> N’@N =OK= N’@N <---
4: Overlap (C-v)-(V-v)--- V|-> V’, C’|-> z1.M[z1] ---------------------------

(C-v) let(V,x.M[x])@N => let(V,x.(M[x]@N))
(V-v) let(V’,x’.C’[x’]) => C’[V’]

let(V’,x.M[x])@N
let(V’,x11.(M[x11]@N)) <-(C-v)-∧-(V-v)-> M[V’]@N

---> M[V’]@N =OK= M[V’]@N <---
5: Overlap (A)-(G)--- M’|-> L, M|-> z1.N’ -----------------------------------

(A) let(let(L,x.M[x]),y.N[y]) => let(L,x.let(M[x],y.N[y]))
(G) let(M’,x’.N’) => N’

let(let(L,x.N’),y.N[y])
let(L,x15.let(N’,y15.N[y15])) <-(A)-∧-(G)-> let(N’,y.N[y])

---> let(N’,y15.N[y15]) =E= let(N’,y.N[y]) <---
6: Overlap (A)-(V-v)--- L|-> V’, C’|-> z1.M[z1] -----------------------------

(A) let(let(L,x.M[x]),y.N[y]) => let(L,x.let(M[x],y.N[y]))
(V-v) let(V’,x’.C’[x’]) => C’[V’]

let(let(V’,x.M[x]),y.N[y])
let(V’,x27.let(M[x27],y27.N[y27])) <-(A)-∧-(V-v)-> let(M[V’],y.N[y])

---> let(M[V’],y27.N[y27]) =E= let(M[V’],y.N[y]) <---
7: Overlap (A)-(A)--- L|-> let(L’,x’.M’[x’]), N’|-> z1.M[z1] ----------------

(A) let(let(L,x.M[x]),y.N[y]) => let(L,x.let(M[x],y.N[y]))
(A) let(let(L’,x’.M’[x’]),y’.N’[y’]) => let(L’,x’.let(M’[x’],y’.N’[y’]))

let(let(let(L’,x’.M’[x’]),x.M[x]),y.N[y])
let(let(L’,x’.M’[x’]),x.let(M[x],y.N[y])) <-(A)-∧-(A)-> let(let(L’,xd.let(M’[xd],yd.M[yd])),y.N[y])
---> let(L’,x.let(M’[x],y4.let(M[y4],y.N[y]))) =E= let(L’,x.let(M’[x],x5.let(M[x5],y.N[y]))) <---
#Joinable! (Total 7 CPs)

The above PolySOL’s output corresponds to the diagrams shown in Fig. 1. Each item shows which two rules are over-
lapped, a substitution for metavariables for the overlap, and the two rules. The highlight in the first rule shows that the
subterm is unifiable with the root of left-hand side of the second rule.

For example, in the overlap 3:, the subterm let(V,x.M[x]) in the rule (C-v) is unifiable with the term
let(M’,x’.N’) in the rule (G) using the unifier M’|-> V, M|-> z1.N’ described immediately above (C-v). Then
using this information, PolySOL generates the underlined term let(V,x.N’)@N which exactly corresponds to the source

6 M. Hamana et al. / Science of Computer Programming 187 (2020) 102322
in the first divergent diagram (3:) in Fig. 1. The lines involving ∧ (indicating “divergence”) mimics the divergence diagram
and the joinability test in text. The sign =OK= denotes syntactic equality, and =E= denotes α-equivalence.

Maraist et al. has shown that confluence of untyped λneed has been established by a different proof method [11], i.e.,
analysis of developments steps in the λ-calculus [17]. This method is somewhat specific to the case of λ-calculus. In contrast
to it, our approach is general rewriting theoretic, and not specific to variants of λ-calculus, i.e., based on critical pair checking
of computation rules.

1.6. Contributions

This paper is the fully reworked and extended version of the conference paper [18]. Besides proofs of all results, the
present paper establishes a theory of confluence of polymorphic computation systems with value/non-value metavariables.
In addition, we provide a new example solving the coherence problem of skew-monoidal categories (§7). More precisely,
the contributions of this paper are summarised as follows.

1. We develop a new framework of polymorphic second-order computation that has predicates of “instance validations”
to reflect value/non-value distinctions (§2).

2. We present a type reconstruction algorithm for polymorphic second-order rules (§3).
3. We develop a theory of confluence in the call-by-value setting (§4) by introducing the notion of “call-by-value joinabil-

ity” of critical pairs (§4.5). To do so, we formulate meta-confluence and object confluence (§4.2).
4. We develop confluence criteria without termination:

• confluence by strong closedness (§5.1)
• confluence by orthogonality (§5.2)
• modular confluence checking (§5.3)

The criterion for the first is new, and the criteria and proofs for the second and the third are adapted from the case of
(simply-typed) higher-order rewrite systems [9] to our polymorphic setting.

5. Using PolySOL, we give confluence proofs of various calculi, including the call-by-need λ-calculus, Moggi’s computa-
tional λ-calculus (§6), and skew-monoidal categories (§7).

1.7. Organisation

The paper is organised as follows. We first introduce the framework of second-order algebraic theories and computation
rules in §2. We next give a type inference algorithm for polymorphic computation rules in §3. We then establish a con-
fluence criterion based on critical pair checking in the call-by-value setting in §4. We further establish confluence criteria
without requiring termination in §5. In §6, we prove confluence of Moggi’s computational λ-calculus using PolySOL. In §7,
we consider a further example, the coherence problem of skew-monoidal categories using PolySOL. In §8, we describe the
implementation of PolySOL. In §9, we report the results in International Confluence Competition 2018, which showed the
effectiveness of PolySOL’s checking method and the new confluence criteria. In §10, we summarise the paper and discuss
related work.

2. Polymorphic computation rules

In this section, we introduce the framework of polymorphic second-order computation rules. It gives a formal unified
framework to provide syntax, types, and computation for various simply-typed computational structure. It is a polymorphic
extension of second-order rewriting systems [19–21] based on second-order abstract syntax with metavariables [2,22] with
molecular types [1]. The present framework introduces type variables into types and the feature of instance validation for in-
stantiation of axioms for value/non-value distinction. The polymorphism in this framework is essentially ML polymorphism,
i.e., predicative and universally quantified at the outermost only and has type constructors on types.

Notation 2.1. We use the notation A for a sequence A1, · · · , An , and |A| for its length. We use the abbreviations “lhs” and
“rhs” to mean left-hand side and right-hand side, respectively.

2.1. Types

We assume that A is a set of atomic types (e.g. Bool, Nat, etc.), and a set V of type variables (written as s, t,a,b, · · ·).
We also assume a set of type constructors together with arities n ∈ N, n ≥ 1. The sets of “0-order types” T0 and (at most
first-order) types T are generated by the following rules:

b ∈ A
b ∈ T0

s ∈ V
s ∈ T0

τ1, . . . , τn ∈ T0
T n-ary type constructor

T (τ1, . . . , τn) ∈ T0

σ1, . . . , σn, τ ∈ T0

σ1, . . . , σn → τ ∈ T

M. Hamana et al. / Science of Computer Programming 187 (2020) 102322 7
y : τ ∈ �

	 � � � y : τ

(M : σ1, · · · ,σm → τ) ∈ 	

	 � � � ti : σi (1 ≤ i ≤ m)

	 � � � M[t1, . . . , tm] : τ

S � f : (σ1 → τ1), . . . , (σm → τm) → τ ∈
 ξ : S → T
	 � �, xi : σi � ti : τiξ (1 ≤ i ≤ m)

	 � � � f σ (xσ1
1 .t1, . . . , xσi

i .ti, . . . , xσm
m .tm) : τξ

Here, σ � ((σ1 → τ1), . . . , (σm → τm) → τ)ξ .
Fig. 2. Typing rules of meta-terms.

We call σ → τ with |σ | > 0 a function type. We usually write types as σ ,τ , A sequence of types may be empty in the
above definition. The empty sequence is denoted by (), which may be omitted, e.g., () → τ , or simply τ . For example, Bool
is an atomic type, List is a unary type constructor, and Bool → List(Bool) is a type.

2.2. Terms and meta-terms

A signature
 is a set of function symbols of the form

t1, . . . , tn � f : (σ1 → τ1), . . . , (σm → τm) → τ

where (σ1 → τ1), . . . , (σm → τm) ∈ T , τ ∈ T0, and type variables t1, . . . , tn may occur in these types. As a result function
symbols have at most second-order function types. A metavariable is a variable of (at most) first-order function type,
declared as M : σ → τ (written as capital letters M, N, K , . . .). A variable (of a 0-order type) is written usually x, y, . . ., and
sometimes written xτ when it is of type τ . The raw syntax is given as follows.

- Terms have the form t ::= x | xσ .t | f (t1, . . . , tn).

- Meta-terms extend terms to t ::= x | xσ .t | f (t1, . . . , tn) | M[t1, . . . , tn].
The last form M[t1, . . . , tn], called meta-application, means that when we instantiate M : a → b with a meta-term s, free
variables of s (which are of types a) are replaced with meta-terms t1, . . . , tn (cf. Definition 2.2). We may write x1, . . . , xn. t
for x1. · · · .xn. t , and we assume ordinary α-equivalence for bound variables. An equational theory is a set of proved equations
deduced from a set of axioms. A metavariable context 	 is a sequence of (metavariable:type)-pairs, and a context � is a
sequence of (variable:type in T0)-pairs. A judgment is of the form 	 � � � t : τ . A type substitution ξ : S → T is a
mapping that assigns a type σ ∈ T to each type variable s in S . We write τ ξ (resp. t ξ) to be the type (resp. meta-term)
obtained from a type τ (resp. a meta-term t) by replacing each type variable in τ (resp. t) with a type using the type
substitution ξ : S → T . A meta-term t is well-typed by the typing rules in Fig. 2. Note that in a well-typed function term, a
function symbol is annotated by its type as

f σ (xσ1
1 .t1, . . . , xσi

i .ti, . . . , xσm
m .tm)

where f has the polymorphic type σ � ((σ1 → τ1), . . . , (σm → τm) → τ)ξ . The type annotation is important in confluence
checking of polymorphic rules. The notation t {x1 �→ s1, . . . , xn �→ sn} denotes ordinary capture avoiding substitution that
replaces variables x1, . . . , xn with terms s1, . . . , sn .

Definition 2.2 (Substitution of meta-terms for metavariables [22,2,3]). Let ni = |τi| and τi = τ 1
i , . . . , τ

ni
i . Suppose

	 � �′, x1
i τ 1

i , . . . , xni
i τ

ni
i � si : σi (1 ≤ i ≤ k),

	, M1 : τ1 → σ1, . . . , Mk : τk → σk � � � e : τ
Then the substituted meta-term 	 � �,�′ � e [M �→ x.s] : τ is defined by

x [M �→ x.s] � x
Mi[t1, . . . , tni] [M �→ x.s] � si {x1

i �→ t1 [M �→ x.s], . . . , xni
i �→ tni [M �→ x.s]}

f ξ (y1.t1, . . . , ym.tm) [M �→ x.s] � f ξ (y1.t1 [M �→ x.s], . . . , ym.tm [M �→ x.s])
where [M �→ x.s] denotes a substitution for metavariables [M1 �→ x1.s1, . . . , Mk �→ xk.sk].

We typically denote by θ a substitution, write eθ for e [M �→ x.s], and call tθ an instance of t .

8 M. Hamana et al. / Science of Computer Programming 187 (2020) 102322
2.3. Notions of values and non-values

Next we introduce the syntactic notions for value/non-values in our framework. In the case of λneed-calculus, we have
used the following two classes of values and non-values

Values V ::= x | λx.M Non-values P ::= M@N | let x = M in N

This defines two special names V , P of metavariables for values and non-values. To give a general definition of this kind of
distinction, we need a syntactic equality on variable names. We write “X ≡V ” for it, which means that the metavariable X ’s
letter is “V ”.

Definition 2.3. A metavariable X is called a value metavariable if X ≡ V or X ≡ V i . A metavariable is called a non-value
metavariable if X ≡ P or X ≡ Pi . Indices i are natural numbers or some syntactic objects (e.g. metavariables, such as P M).
A metavariable which is neither value nor non-value metavariable is often called a general metavariable.

Definition 2.4. A pattern meta-term is a meta-term which is not a metavariable, nor a meta-application. Value patterns Val are
a finite set of pattern meta-terms used for specifying values. Likewise, non-value patterns NonVal are a finite set of pattern
meta-terms used for specifying non-values. These two sets must specify disjoint term sets, i.e., {tθ | t ∈ Val, subst. θ} ∩
{tθ | t ∈ NonVal, subst. θ} = ∅.

In the case of λneed-calculus, we take

Val � {x, λx.M} NonVal � {M@N, let x = M in N}

Definition 2.5 (Valid predicate for substitution). A substitution θ of meta-terms for metavariables is valid if for every X �→ x.s
in θ , the following holds:

(i) If X is a value metavariable, then s is an instance of a meta-term in V al.
(ii) If X is a non-value metavariable, then s is an instance of a meta-term in NonVal.

(iii) If X is a general metavariable, then there is no restriction on s.

We write valid θ if a substitution θ is valid. This is an instance of a valid predicate given in our previous work [18].

Remark 2.6. An arbitrary predicate to classify terms, rather than the value/non-value predicate, was allowed in our pre-
vious work [23]. To keep the theory simple and to investigate more detailed properties in this paper, we focus only on
value/non-value distinction of terms, and develop a general theory of confluence for call-by-value calculi. �
2.4. Polymorphic second-order computation system

For meta-terms 	 � � � � : τ and 	 � � � r : τ , a polymorphic second-order computation rule (or simply rule) is of
the form

	 � � � � ⇒ r : τ
satisfying

(i) � is not a metavariable nor meta-application, i.e., of the form f (x.t).
(ii) � is a higher-order pattern [15], i.e., a meta-term in which every occurrence of meta-application in � is of the form

M[x1, . . . , xn], where x1, . . . , xn are distinct bound variables.
(iii) All metavariables in r appear in �.

A polymorphic second-order computation system with values/non-values is formally given by a tuple (
,C,Val,NonVal)
consisting of a signature
, a set C of rules, and value and non-value patterns. We may call it simply a computation
system.

Given a computation system (
,C,Val,NonVal), one-step computation

	 � � � s ⇒C t : τ
is obtained by the inference system given in Fig. 3. The (RuleSub) instantiates a polymorphic computation rule � ⇒ r in C by
substitution [M �→ x.s] of meta-terms for metavariables and substitution ξ on types. The (Fun) means that the computation
step is closed under polymorphic function symbol contexts.

M. Hamana et al. / Science of Computer Programming 187 (2020) 102322 9
(RuleSub)

S is the set of all type variables in τi,σi, τ ξ : S → T
	 � �′, xi : τi � si : σiξ (1 ≤ i ≤ k) valid [M �→ x.s]
(M1 : (τ1 → σ1), . . . , Mk : (τk → σk) � � � � ⇒ r : τ) ∈ C

	 � �,�′ � �ξ [M �→ x.s] ⇒C rξ [M �→ x.s] : τξ

(Fun)

S � f : (σ1 → τ1), . . . , (σm → τm) → τ ∈
 ξ : S → T
	 � �, xi : σi � ti ⇒C t′

i : τiξ (some i s.t. 1 ≤ i ≤ m)

	 � � � f σ (xσ1
1 .t1, . . . , xσi

i .ti, . . . , xσm
m .tm) ⇒C f σ (xσ1

1 .t1, . . . , xσi
i .t′

i, . . . , xσm
m .tm) : τξ

Here, σ � ((σ1 → τ1), . . . , (σm → τm) → τ)ξ .
Fig. 3. Polymorphic second-order computation ⇒C on meta-terms.

If one-step computation happens under the empty metavariable context obtained as · � � � s ⇒C t : τ (i.e. computation
on terms, not on meta-terms), we write it as

� � s →C t : τ .

We also usually omit contexts and types, and simply write s ⇒C t or s →C t . We regard ⇒C and →C to be binary relations
on meta-terms and terms, respectively.

Example 2.7. The simply-typed λneed-calculus is formulated as a polymorphic second-order computation system with
values/non-values

(sigNeed,lmdNeed,Val,NonVal)

where the signature and rules are given as

sigNeed = [signature|
lam : (a -> b) -> Arr(a,b) ; app : Arr(a,b),a -> b
let : a,(a -> b) -> b |]

lmdNeed = [rule|
(G) let(M, x.N) => N
(I) lam(x.M[x]) @ N => let(N,x.M[x])
(V-v) let(V, x.C[x]) => C[V]
(C-v) let(V, x.M[x])@N => let(V, x.M[x]@N)
(A) let(let(L,x.M[x]), y.N[y]) => let(L,x.let(M[x],y.N[y])) |]

and value and non-value patterns are defined by

Val � {x, λx.M} NonVal � {M@N, let x = M in N}.
Note that in the signature, the type Arr(a,b) encodes a function type a → b of any order in the λneed-calculus. The
limitation to second-order in our framework is irrelevant to the type structure of the object language. As this example
shows, the second-order computation system can express a λ-calculus of any order (not only second-order) using type
constructors. �
3. Type inference for polymorphic computation rules

We have formulated that polymorphic computation rules were explicitly typed. But when we give an implementation of
confluence/termination checker, to insist that the user writes fully-annotated type and context information for computation
rules is not a good system design. Hence we give a type inference algorithm. In the case of λneed-calculus, the user only
provides the signature sigNeed and “plain” rules lmdNeed in §1.4. The type inference algorithm infers the missing context
and type annotations (highlights) as:

M : s → t, N : s � � appArr(s, t), s → t(lam(s → t) → Arr(s, t)(xs. M[x]), N) ⇒ M[N] : t

These annotations are important for computing overlaps between rules when checking confluence of polymorphic rules.

3.1. Algorithm

Our algorithm is given in Fig. 4, which is a variant of Damas–Milner type inference algorithm W [24]. It has several
modifications to cope with the language of meta-terms and to return enough type information for confluence checking.

10 M. Hamana et al. / Science of Computer Programming 187 (2020) 102322
W(
, x) = if x : τ appears in
 then ([], � xτ : τ) else error
W(
, x.t) = let a = freshVar

(θ ′, 	 � t′ : τ ′) = W({x : a} ∪
, t)
in (θ ′, 	 � xa.t′ : a → τ ′)

W(
, f (t)) = if f : d → c appears in
 then
let n = newNum in

(d′ → c′) = attach the index n to all type vars in (d → c)
(θ,	, u,a) = foldr (Witer
) ([], [], [], []) t
b = freshVar
θ ′ = unify((a → b)θ, d′ → c′)

in (θ ′ ◦ θ, { fn : (d′ → c′)θ ′} ∪ 	θ ′ � fn(u) : bθ ′)
else error

W(
, M[t]) = let (θ,	, u,a) = foldr (Witer
) ([], [], [], []) t
b = freshVar

in (θ, {M : a → b} ∪ 	 � M[u] : b)

Witer
(t, (θ0,	0, u, τ))= let (θ, 	 � u : τ) = W(
, t)
in (θ ◦ θ0, 	 ∪ 	0, (u, u), (τ , τ))

mkMatch() = {(σ , τ) | (M : σ) ∈ 	, (M : τ) ∈ 	,σ �= τ }
infer(
, t) = let (θ, 	 � u : τ) = W(
, t)

θ ′ = unify(mkMatch(θ)) ◦ θ

in 	θ ′ � u θ ′ : τ θ ′
infer(
, s ⇒ t) = infer({rule : s, s → t} ∪
, rule(s, t))

• freshVar returns a new type variable.
• newNum returns a new number (or by counting up the stored number).
• foldr is the usual “foldr” function for the sequence of terms (regarded

as a list) to repeatedly apply the function W by the function Witer .
• unify returns the most general unifier of the pairs of types.
• “[]” denotes the empty sequence or substitution.

Fig. 4. Type inference algorithm.

The algorithm takes a signature
 and an un-annotated meta-term t . A sub-function W returns (θ, 	 � u : τ), which is
a pair of type substitution θ and an inferred judgment. The types in it are still needed to be unified. The context 	 may
contain unifiable declarations, such as M : σ and M : τ with σ �= τ , and these σ and τ should be unified. The main function
infer(
, t) does it, and returns the form

	 � t′ : τ .

The meta-term t′ is a renamed t , where every function symbol f in the original t now has a unique index as fn , and 	 is
the set of inferred type declarations for fn ’s and all the metavariables occurring in t′ . Similarly, for a given plain rule s ⇒ t ,
the function infer(
, s ⇒ t) returns 	 � s′ ⇒ t′ : τ , where 	 is an inferred context and corresponding renamed terms s′, t′
as the sole term case. This is realised as inferring types for a meta-term to implement a rule using the new binary function
symbol rule (see the definition of infer(
, s ⇒ t)).

We denote by | t | a meta-term obtained from t by erasing all type annotations in the variables and the function symbols
of t . We use the usual notion of “more general” relation on substitutions, denoted by τ ′ ≥ τ , if there exists a substitution σ
such that σ ◦ τ ′ = τ . It is a preorder.

Theorem 3.1 (Soundness). If infer(
, t) = (� t′ : τ), then there exists � such that 	 � � � t′ : τ .

Proof. By induction on the structure of t .

Theorem 3.2 (Completeness). If 	 � � � t : τ holds under a signature
 and infer(
, | t |) = (′ � t′ : τ ′), then there exists a
substitution θ such that τ ′θ = τ and

• If M : σ ∈ 	 then, there exists M : σ ′ ∈ 	′ such that σ ′θ = σ .
• If f σ→τ occurs in t, then there exists fn : σ ′ → τ ′ ∈ 	′ such that fn occurs in t′ at the same position as t, and (σ ′ → τ ′)θ =

σ → τ .

Proof. By induction on the typing derivation of 	 � � � t : τ .

M. Hamana et al. / Science of Computer Programming 187 (2020) 102322 11
The reason why our algorithm attaches an index n to each occurrence of a function symbol f as “ fn” is to distinguish
different occurrences of the same f in a meta-term, and to correctly infer the type of each of them (see Prob. 2 in §1.4).
If we have infer(
, t) = (� t′ : τ), then we can fully annotate types for the plain term t . We can pick the type of each
function symbol in t by finding fn : σ ′ → τ ′ ∈ 	, which means that this f has the inferred type σ ′ → τ ′ .

4. Confluence of polymorphic computation systems in call-by-value

In this section, we establish a confluence criterion of polymorphic computation systems based on critical pair checking.

4.1. Abstract rewriting

We review classical results on abstract rewriting [12,7]. Abstract rewriting is a general framework for analysing properties
of rewriting without touching the structure of “terms”, only focusing the rewrite relation between elements (in this sense
“abstract”).

An abstract rewriting system (ARS) is a pair (A,→) of a set A and a binary relation → on A. We write →∗ for the reflexive
transitive closure, →+ for the transitive closure, and ← for the converse of →. We define ↔ � → ∪ ←. We say:

1. a,b ∈ A are joinable, written a ↓ b, if ∃c.a →∗ c & b →∗ c.
2. → is confluent if ∀a,b, c ∈ A. a →∗ b & a →∗ c implies b ↓ c.
3. → is Church-Rosser (CR) if ∀a,b ∈ A. a ↔∗ b implies a ↓ b.
4. → is locally confluent (WCR) if ∀a,b, c ∈ A. a → b & a → c implies b ↓ c.
5. → is strongly normalising (SN) if ∀a ∈ A, there is no infinite sequence a → a1 → a2 → ·· · .
6. a is a normal form if there is no b ∈ A such that a → b.

We identify an ARS A with its relation → (e.g. we say A is CR to mean → is CR). It is well-known that confluence and
Church-Rosser properties are equivalent, hence we have used the word CR to also mean confluence.

4.2. Two confluence properties

Suppose a polymorphic computation system C = (
,C,Val,NonVal) is given. First we note an important fact that the
pair (the set of all meta-terms, ⇒C) forms an ARS. Hence any notion and result on ARS are applicable to second-order
computation. Henceforth, we may regard a computation system C as the ARS. We say:

(i) C is meta-confluent if the ARS (the set of all meta-terms, ⇒C) is confluent.
(ii) C is object confluent if the ARS (the set of all terms, →C) is confluent.

The difference between terms and meta-terms was in §2.2.
Since ⇒C ⊇→C (see §2.4) and rewrite steps do not introduce new metavariables, if C is meta-confluent, then it is also

object confluent, but not vice versa. What we want to establish for concrete calculi (such as the λneed-calculus) is object
confluence.

Meta-confluence means the confluence property at the meta-level, i.e., confluence on the meta-terms with metavariables,
which are wider than the terms (with no metavariables). Practically, meta-confluence is usually easier to establish, therefore
one often firstly establishes meta-confluence and next concludes object confluence as a derived property. The proof of
λneed-calculus in §1.4 actually chose this strategy: firstly established the meta-confluence of the polymorphic computation
system, and then concluded the object confluence. But this strategy does not always work. In §6, we will see that the
polymorphic computation system of λC-calculus is not meta-confluent; nevertheless, we can prove its object confluence of
it using the notion of call-by-value joinability (Definition 4.5).

4.3. Notion of unifier between two polymorphic meta-terms in call-by-value

To compute critical pairs, we need to compute overlapping between rules using second-order unification. Ordinary unifier
between terms s and t is a substitution θ of terms for variables that makes sθ = tθ . In the case of polymorphic second-order
algebraic theory, we should also take types into account. For example, what should be a unifier between the following
terms?

λ(bool→t)→Arr(bool,t)(xbool.M[x]) ?= λ(v→int)→Arr(v,int)(xv.gv→int(x))

Here t,v are type variables. These terms are unifiable by a substitution of meta-terms θ : M �→ xbool.gbool→int(x) together with
a type substitution ξ : v �→ bool, t �→ int.

Moreover, a unifier for value/non-value metavariables should be valid. For example, consider a unification problem:

M @λ(a→b)→Arr(a,b)(x.N[x]) ?= P @ V

12 M. Hamana et al. / Science of Computer Programming 187 (2020) 102322
This is unifiable by a valid substitution θ = {M �→ P , V �→ λ(a→b)→Arr(a,b)(x.N[x])}, because λ(a→b)→Arr(a,b)(x.N[x]) is a value,
and a general metavariable M can be replaced with a non-value P (but P �→ M is invalid). A non-solvable problem is

V @λ(a→b)→Arr(a,b)(x.N[x]) ?= P1 @ P2

Neither V �→ P1 nor P1 �→ V is valid. Moreover, P2 �→ λ(a→b)→Arr(a,b)(x.N[x]) is invalid, because P2 is a non-value metavari-
able while λ-abstraction is a value.

This leads us to the following definition.

Definition 4.1. A unifier between meta-terms s and t is a tuple (ξ,ϑ) such that s ξ ϑ = t ξ ϑ , where

(i) ξ is a substitution of types for type variables, and
(ii) ϑ is a valid substitution of meta-terms for metavariables.

The most general unifier is a maximal unifier with respect to the preorder on substitutions of type variables and of meta-
terms.

4.4. Critical pairs of polymorphic computation systems with values/non-values

We now formulate the notion of critical pairs for our polymorphic case with values/non-values distinction. We first recall
basic notions.

A position p is a finite sequence of natural numbers. The empty sequence ε is the root position, and the concatenation
of positions is denoted by pq or p.q. The order on positions is defined by p < q if there exists a non-empty p′ such that
p.p′ = q. The set Pos(t) of the positions of a meta-term t is defined by

Pos(x) = {ε}
Pos(x.t) = {ε} ∪ {1.p | p ∈ Pos(t)}

Pos(f (t1, . . . , tn)) = {ε} ∪ {i.p | 1 ≤ i ≤ n, p ∈ Pos(ti)}
Pos(M[t1, . . . , tn]) = {ε} ∪ {i.p | 1 ≤ i ≤ n, p ∈ Pos(ti)}

The notation s[u]p means replacing the subterm at the position p of s with u, and s|p means selecting the subterm of s at
the position p.

Suppose a computation system C is given. We say two rules l1 ⇒ r1, l2 ⇒ r2 in C are variant if l1 ⇒ r1 is obtained by
injectively renaming variables and metavariables of l2 ⇒ r2.

Definition 4.2. We say that a position p in a meta-term t is a metavariable position if t|p is a metavariable or meta-
application, i.e., t|p = M[c1, . . . , cn]. This description includes the case t|p = M by the case n = 0, for which we identify M[]
with just a metavariable M .

An overlap represents an overlapping of the two rules, which admits the situation that a term can be rewritten by the
two different rules.

Definition 4.3. An overlap between two rules l1 ⇒ r1 and l2 ⇒ r2 of a polymorphic computation system (
,C,Val,NonVal)
is a tuple 〈l1 ⇒ r1, p, l2 ⇒ r2, ξ, ϑ〉 satisfying the following properties:

(i) l1 ⇒ r1, l2 ⇒ r2 are variants of rules in C without common (meta)variables.
(ii) (ξ,ϑ) is a most general unifier between l1|p and l2.

(iii) p is a non-metavariable position of l1, or if p is a metavariable position of l1, i.e., l1|p = M[c1, . . . , cn], then M is a value
or non-value metavariable.

(iv) If p is the root position, l2 ⇒ r2 is not a variant of l1 ⇒ r1.

The ordinary definition of overlap requires that the position p of l1 be a non-metavariable position because l1|p matches
anything if it is a metavariable, which means that it should not be considered as overlapping. But in the call-by-value
case, the situation differs, because a value metavariable V (resp. a non-value metavariable P) represents value patterns
(resp. non-value patterns) in V al. If l1|p is a value metavariable, then we need to check overlapping between value patterns
and a meta-term. We note that the notion of values is not stable under reduction (unlike the notion of types). For example,
a β-reduction step

λ(x.x)@y ⇒C y

M. Hamana et al. / Science of Computer Programming 187 (2020) 102322 13
transforms a non-value (an application) to a value (a variable). Therefore, a non-value metavariable position in a meta-term
might become a value position during computation. This means that we need to analyse the cases when a meta-term
involves a value/non-value metavariable. The bold face sentence in the item (iii) describes it.

Definition 4.4. The critical pair (CP) generated by an overlap 〈l1 ⇒ r1, p, l2 ⇒ r2, ξ,ϑ〉 is a triple 〈r1θ, l1θ, r′
2〉 where

• θ � ϑ ◦ ξ ,
• l1θ ⇒C r1θ which rewrites the root position ε of l1θ using l1 ⇒ r1,
• l1θ ⇒C r′

2 which rewrites the position p of l1θ using l2 ⇒ r2.

This is depicted as

l1θ

ε p

r1θ r′
2

This is a critical situation that admits two ways of reduction, hence called a critical pair. Ordinary Knuth-Bendix crit-
ical pairs lack the middle l1θ , hence “pairs”. But including “the source of divergence” designates a situation more clearly
(especially in the implementation), hence our notion of critical pair consists of three terms. We define

overlap(l1 ⇒ r1, l2 ⇒ r2) � {all possible overlaps between l1 ⇒ r1 and l2 ⇒ r2}.
Algorithmically, this function scans all subterms of l1 and tries to unify each of them with l2 to produce an overlap using
second-order unification. We then collect all overlaps in C by

O �
⋃

{overlap(l1 ⇒ r1, l2 ⇒ r2) | l1 ⇒ r1, l2 ⇒ r2 ∈ C}.
Finally, we obtain all critical pairs of C by generating the critical pair of each overlap in O.

4.5. Joinability of critical pairs

We assume that for each metavariable M , there exist a value metavariable V M and a non-value metavariable P M . We
say that a critical pair 〈r1, t, r2〉 is joinable if r1 ⇓C r2, depicted as

t

r1

∗

r2

∗
·

Definition 4.5. We say that a critical pair 〈r1, t, r2〉 is call-by-value joinable if for every substitution ρ of metavariables for
metavariables in t satisfying

ρ : M �→ V M or M �→ P M for each metavariable M occuring in t,

then the joinability r1ρ ⇓C r2ρ holds. This is depicted as

tρ

r1ρ

∗

r2ρ

∗
·

(2)

This amounts to checking joinability in the call-by-value setting. In the call-by-value setting, M denotes either a value or
non-value. Hence we check for each M in t , two cases of the joinability: when M is a value metavariable and when M is a
non-value metavariable. This is done by applying all possible renamings ρ that change M in t to either a value metavariable
V M or a non-value metavariable P M .

14 M. Hamana et al. / Science of Computer Programming 187 (2020) 102322
Lemma 4.6.

1. If a critical pair is joinable, then it is also call-by-value joinable, but not vice versa.
2. If a critical pair 〈r1, t, r2〉 is call-by-value joinable, then r1θ ↓C r2θ for any substitution θ of terms (without metavariables) for

metavariables.

Proof.

(i) By definition.
(ii) Instantiating the joinability (2) of call-by-value critical pairs to terms, we have the result.

We first prove an easier case, which does not have value/non-value distinction.

Proposition 4.7. Let (
,C) be a polymorphic second-order computation system without value/non-value metavariables. If every crit-
ical pair of (
,C) is joinable, then ⇒C is locally confluent.

Proof. We show “if u ⇐C w ⇒C s then u ⇓C s” by induction on the proof of u ⇐C w , using the inference rules in Fig. 3.

• (RuleSub) Let l ⇒ r ∈ C and consider the situation

rθ ⇐==ε lθ ==p
′
⇒ s

for a valid substitution θ for metavariables and type variables.
(i) If the rewrite position p′ is not “a metavariable position of l or below it”, then it is an instance of a critical pair,

hence rθ ⇓C s.
(ii) Case p′ = p · q is a metavariable position in l or below it, i.e., there exists a metavariable M : σ1, . . . , σn → τ such

that

l|p = M[c]
where c1, . . . , cn are distinct bound variables, since l is a higher-order pattern. Suppose θ has the following assign-
ment:

θ : M �→ x1, . . . , xn. t

Let tp be a one-step reduct of t by contracting the position q as

t{x �→ c} ⇒C tp

We define

l
Mp
p � l [Mp]p ; θp � [Mp �→ tp]

i.e., l
Mp
p as a modified l, where M[c] at the position p of l is replaced with a new metavariable M p : τ .

(Note that the arity changed from M to Mp , and since M is never a value/non-value metavariable, θp is always
valid. If value/non-value metavariables are involved, the validity of θp is not ensured.)
Define θ ′ to be M �→ c.tp, N �→ θ(N) for N �= M , which is valid. Since l is a higher-order pattern, we have

rθ ⇐====ε
lθ ====p′

⇒ l
Mp
p θp θ = s

r θ ′
∗�
���

⇐=============== l θ ′
∗�

��

• (Fun): Consider the situation f ξ (x.s) ⇐==p′
f ξ (x.u) ==⇒ t , where p′ is not the root position because (Fun) is applied.

Hereafter, we omit the superscript of f .
(i) Case that the right rewrite happens at the root, i.e., there exists l ⇒ r ∈ C and a valid θ such that

s ⇐====p′
f (x.u) = lθ ===ε ⇒ rθ

Flipping the left and right rewrites, rθ ⇓C s is proved as the case for (RuleSub).

M. Hamana et al. / Science of Computer Programming 187 (2020) 102322 15
(RuleSub)

S is the set of all type variables in τi,σi, τ ξ : S → T
� �′, xi : τi � si : σiξ (1 ≤ i ≤ k) valid [M �→ x.s]
(M1 : (τ1 → σ1), . . . , Mk : (τk → σk) � � � � ⇒ r : τ) ∈ C

� �,�′ � �ξ [M �→ x.s] →C rξ [M �→ x.s] : τξ

(Fun)

S � f : (σ1 → τ1), . . . , (σm → τm) → τ ∈
 ξ : S → T
� �, xi : σi � ti →C t′

i : τiξ (some i s.t. 1 ≤ i ≤ m)

� � � f σ (xσ1
1 .t1, . . . , xσi

i .ti, . . . , xσm
m .tm) →C f σ (xσ1

1 .t1, . . . , xσi
i .t′

i, . . . , xσm
m .tm) : τξ

Here, σ � ((σ1 → τ1), . . . , (σm → τm) → τ)ξ .
Fig. 5. Polymorphic second-order computation →C on terms.

(ii) Case the i, j-th arguments of f are rewritten. Without loss of generality, we assume i < j ∈N .

f (· · · , xi .u
′
i, · · · , x j .u j, · · ·) ⇐==ip f (x.u) ==jq⇒ f (· · · , xi .ui, · · · , x j .u

′′
j , · · ·)

f (· · · , xi .u
′
i, · · · , x j .u

′′
j , · · ·)

jq�
��

============== f (· · · , xi .u
′
i, · · · , x j .u

′′
j , · · ·)

ip�
��

(iii) Case the i-th argument of f is rewritten by two ways as:

f (· · · , xi .u
′
i, · · ·) ⇐===ip

f (x.u) ===iq ⇒ f (· · · , xi .u
′′
i , · · ·)

f (· · · , xi .s, · · ·)
∗�
��

=================== f (· · · , xi .s, · · ·)
∗�

��

The above diagram commutes by the induction hypothesis:
u′

i ⇒∗
C s ⇐∗

C u′′
i and closedness of reduction by contexts.

The next is a key proposition, which takes value/non-values into account.

Proposition 4.8. Let (
,C,Val,NonVal) be a polymorphic second-order computation system. If every critical pair is call-by-value
joinable, then →C is locally confluent.

Proof. We show “if w ←C u →C s then w ↓C s” by induction on the proof of w ←C u, using the inference rules in Fig. 5.

• (RuleSub) Let l ⇒ r ∈ C and consider the situation

rθ �ε
lθ

p′� s

for a valid substitution θ for metavariables and type variables.
(i) If the rewrite position p′ is not “a metavariable position of l or below it”, then 〈rθ, lθ, s〉 is an instance of a critical

pair, hence by Lemma 4.6, it is joinable.
(ii) Case p′ = p · q is a metavariable position in l or below it, i.e., there exists a metavariable M : σ1, . . . , σn → τ such

that l|p = M[c]. Suppose θ has the assignment

θ : M �→ x1, . . . , xn. t.

(a) If M is a value or non-value metavariable, then 〈rθ, lθ, s〉 is an instance of a critical pair, hence by Lemma 4.6,
it is joinable.

(b) If M is a general metavariable, then it is proved by the same way as the proof of Proposition 4.7, (RuleSub) (ii).
• (Fun): This case is proved by the same way as the proof of Proposition 4.7 (Fun).

Theorem 4.9. Let (
,C,Val,NonVal) be a polymorphic second-order computation system. Assume that C is strongly normalising. If
every critical pair is call-by-value joinable, then C is object confluent, i.e., →C is confluent.

Proof. By Proposition 4.8 and Newman’s lemma.

16 M. Hamana et al. / Science of Computer Programming 187 (2020) 102322
1: new(a.new(b.H[b]))

(idem-new) (new/new)

new(b.H[b]) new(a.new(b.H[a]))

2: new(a.new(b.X’[a]))

(new/new) (idem-new)

new(a.new(b.X’[b])) new(a.X’[a])

3: new(a.new(b.new(b’.X’[a,b,b’])))

(new/new) (new/new)

new(a.new(b.new(b’.X’[b,a,b’]))) new(a.new(b.new(b’.X’[a,b’,b])))

·
Fig. 6. Critical pairs of a calculus of the new name generation.

5. Confluence criteria without termination

A given calculus is often not terminating or proving its termination is difficult. Nevertheless we want to prove con-
fluence. This section presents three additional confluence criteria: two techniques not requiring termination, called strong
closedness (§5.1) and orthogonality (§5.2), and one technique by modularity (§5.3). These criteria have been implemented
in the PolySOL system.

5.1. Confluence by strong closedness

As an example, we consider the laws of the new name generation operator (or, restriction operator) [5, Sec. V]. They
include a function symbol new for new name generation and two rules. The idea is that new(a.X[a]) first generates a
name a and then continues as X using a, as in the new operator of the π-calculus [25].

sigrest = [signature|
new : (N -> A) -> A |]

rest = [rule|
(idem-new) new(a.X) => X
(new/new) new(a.new(b.X[a,b])) => new(a.new(b.X[b,a])) |]

The law (idem-new) states that generating a new name a and continuing X without using a is equivalent to just doing X.
The law (new/new) states that generating new names a and b and continuing X using a,b is equivalent to generating
new names a and b, and continuing X using b,a (N.B. the application order is changed).

By invoking the command “cri” for critical pair checking, PolySOL checks their critical pairs. It reports three CPs, all of
which are joinable (see Fig. 6). Importantly, the system is not strongly normalising because the rhs of the rule (new/new)
matches its lhs. Therefore, we cannot infer confluence based on Newman’s lemma. Other criteria must be sought.

Examining the CPs carefully as shown in Fig. 6, one can find a particular phenomenon: all the CPs are joinable by at-most
one-step (from left, right, or both sides). This property, which is known as strong closedness of CPs, is useful to provide a
sufficient condition deriving strong confluence [12] of a computation system, which implies confluence without termination.

We will formulate this method formally. For an ARS (A,→), we define →= � → ∪ idA (i.e., the reflexive closure of →).
We say that → is strongly confluent if

∀a,b, c ∈ A. a → b & a → c implies ∃d.b →∗ d & c →= d.

Proposition 5.1 (Strong confluence [12]). Every strongly confluent ARS is confluent.

Definition 5.2. A computation system (
,C) is strongly closed if for every critical pair 〈r1, t, r2〉 of (
,C), there exist u1
and u2 such that r1 ⇒∗

C u1⇐=
C r2 and r1⇒=

C u2 ⇐∗
C r2.

A meta-term is called linear if no metavariable occurs more than once. A computation system is called linear if both
sides of rules are linear, and left-linear if every left-hand side of rules is linear. We now prove a theorem deriving strong
confluence by checking the strong closedness of CPs.

Theorem 5.3. Let (
,C) be a linear polymorphic second-order computation system. If (
,C) is strongly closed and both sides of each
rule are higher-order patterns, then ⇒C is strongly confluent, hence confluent.

M. Hamana et al. / Science of Computer Programming 187 (2020) 102322 17
Proof. We show “if u ⇐C w ⇒C s then u ⇒∗
C ◦⇐=

C s” by induction on the proof of u ⇐C w , using the inference rules in
Fig. 3.

• (RuleSub) Let l ⇒ r ∈ C and consider the situation

rθ ⇐==ε lθ ==p ⇒ s

for a valid substitution θ for metavariables and type variables.
(i) If the rewrite position p is a non-metavariable position of l, then it is an instance of a critical pair, hence rθ ⇒∗

C◦⇐=
C s by strong closedness.

(ii) Case p is a metavariable position in l or below it, i.e., there exists a metavariable M : σ1, . . . , σn → τ such that
l|p = M[c]. Since l is a higher-order pattern, c1, . . . , cn are distinct bound variables. Suppose θ : M �→ x1, . . . , xn. t

and t{x �→ c} ⇒C tp . We define l
Mp
p � l [Mp]p, θp � [Mp �→ tp], and θ ′ : M �→ c.tp, N �→ θ(N) for N �= M , which is

valid. Since l and r are linear and higher-order patterns, we have

rθ ⇐====ε
lθ ====p ⇒ l

Mp
p θp θ = s

r θ ′
=�
���

⇐=============== l θ ′

���

• (Fun): This case is proved in the same way as the proof of Proposition 4.7 (Fun).

Example 5.4. The computation system rest given in the beginning of this subsection is strongly confluent because every
CP is strongly closed, hence confluent. �

The method for proving confluence of linear rewriting systems through strong closedness of CPs has been used in Suzuki
et al.’s paper [26] for nominal rewriting systems. We gave a sufficient condition for strong confluence for polymorphic
computation systems. Our method is also straightforwardly applicable to the case of Mayr and Nipkow’s higher-order rewrite
systems [9].

5.2. Confluence by orthogonality

Another confluence criterion not requiring termination is “orthogonality”.

Definition 5.5. A computation system (
,C) is called orthogonal if it is left-linear and for any rules l1 ⇒ r1, l2 ⇒ r2 in C ,
there exists no overlap between l1 ⇒ r1 and l2 ⇒ r2.

We show that every orthogonal computation system is confluent. We first define a notion of parallel reduction ⇒par
C

using the inference system in Fig. 7.

Lemma 5.6.

(i) s ⇒par
C s.

(ii) If s ⇒C t then s ⇒par
C t.

(iii) If s ⇒par
C t then s ⇒∗

C t.

Proof.

(i) By induction on s.
(ii) By induction on the proof of s ⇒C t , using (i).

(iii) By induction on the proof of s ⇒par
C t .

Thus, to obtain confluence of ⇒C , it suffices to show that ⇒par
C has the diamond property: if u ⇐par

C s ⇒par
C t then

u ⇒par
C ◦ ⇐par

C t .

Notation 5.7. We write θ ⇒par
C δ to mean that for any metavariable M (with arity n) with θ : M �→ x.s, θ : M �→ x.t , s ⇒par

C t

holds. We also write t ⇒par
C t′ as an abbreviation for ti ⇒par

C t′
i for all i = 1, . . . , |t|.

The following lemma is used in the proof of Theorem 5.11.

18 M. Hamana et al. / Science of Computer Programming 187 (2020) 102322
(Varpar)
y : τ ∈ �

	 � � � y ⇒par
C y : τ

(Metavarpar)

(M : σ1, · · · ,σm → τ) ∈ 	

	 � � � ti ⇒par
C t′

i : σi (1 ≤ i ≤ m)

	 � � � M[t1, . . . , tm] ⇒par
C M[t′

1, . . . , t′
m] : τ

(RuleSubpar)

S is the set of all type variables in τi,σi, τ ξ : S → T
	 � �′, xi : τi � si ⇒par

C s′
i : σiξ (1 ≤ i ≤ k)

valid [M �→ x.s] valid [M �→ x.s′]
(M1 : (τ1 → σ1), . . . , Mk : (τk → σk) � � � � ⇒ r : τ) ∈ C

	 � �,�′ � �ξ [M �→ x.s] ⇒par
C rξ [M �→ x.s′] : τξ

(Funpar)

S � f : (σ1 → τ1), . . . , (σm → τm) → τ ∈
 ξ : S → T
	 � �, xi : σi � ti ⇒par

C t′
i : τiξ (1 ≤ i ≤ m)

	 � � � f σ (xσ1
1 .t1, . . . , xσm

m .tm) ⇒par
C f σ (xσ1

1 .t′
1, . . . , xσm

m .t′
m) : τξ

Here, σ � ((σ1 → τ1), . . . , (σm → τm) → τ)ξ .

Fig. 7. Parallel reduction ⇒par
C on meta-terms.

Lemma 5.8. If θ ⇒par
C δ then sθ ⇒par

C sδ.

The next lemma expresses the following idea: in a parallel-reduction step lθ ⇒par
C s, where l is a linear higher-order pat-

tern and does not overlap with any rule, the l-part cannot change, i.e., all reductions must take place inside the meta-terms
introduced via θ .

Lemma 5.9. Let (
,C) be a polymorphic second-order computation system, and let l be a linear higher-order pattern that does not
overlap with any left-hand side of C . Then, if lθ ⇒par

C s then there exists a valid substitution δ such that lδ = s and θ ⇒par
C δ.

Corollary 5.10. Let (
,C) be an orthogonal polymorphic second-order computation system, and let l ⇒ r ∈ C . Then, if lθ = f (x.t) and
t ⇒par

C t′ then there exists a valid substitution δ such that lδ = f (x.t′) and θ ⇒par
C δ.

We now prove a theorem deriving the diamond property of ⇒par
C .

Proposition 5.11. Let (
,C) be a polymorphic second-order computation system. If (
,C) is orthogonal, then ⇒par
C has the diamond

property.

Proof. We show “if u ⇐par
C w ⇒par

C s then u ⇒par
C ◦ ⇐par

C s” by induction on the sum of the lengths of the proofs of
u ⇐par

C w and w ⇒par
C s, with a case analysis according to the inference rules in Fig. 7.

Here we consider the most difficult case where the last inference rule used in one of the two proofs is (RuleSubpar) and
the other is (Funpar). The other cases are shown by using the induction hypothesis.

• Let l ⇒ r ∈ C , t ⇒par
C t′ and consider the situation

rθ ′ ⇐=======(RuleSubpar)
lθ = f (x.t) =====(Funpar)⇒ f (x.t′)

for valid substitutions θ, θ ′ for metavariables and type variables such that θ ⇒par
C θ ′ . Then by Corollary 5.10, there

exists a valid substitution δ such that lδ = f (x.t′) and θ ⇒par
C δ. Hence by the induction hypothesis, there exists a valid

substitution δ′ such that θ ′ ⇒par
C δ′ and δ ⇒par

C δ′ . By applying (RuleSubpar), we have f (x.t′) = lδ ⇒par
C rδ′ . On the other

hand, by Lemma 5.8, we have rθ ′ ⇒par
C rδ′ , thus closing the diamond.

Combining this with Lemma 5.6, we have:

Theorem 5.12. Every orthogonal computation system is meta-confluent.

M. Hamana et al. / Science of Computer Programming 187 (2020) 102322 19
Mayr and Nipkow have shown that every orthogonal higher-order pattern rewrite system without polymorphism is con-
fluent [9] using a different notion of parallel reduction called superdevelopments originally used in Aczel’s paper [27]. We
have shown that every orthogonal polymorphism computation system is confluent using the parallel reduction “ ⇒par

C ” in
the style of developments as in Tait and Martin-Löf’s proof for λ-calculus [17]. In the next subsection, we also apply this
technique to show commutation of mutually orthogonal computation systems.

5.3. Modular confluence checking

It is sometimes useful to split the system into two subsystems for making its confluence proof easier; in particular, into
the higher-order part and the first-order part to which we can apply a powerful confluence prover for first-order term
rewriting systems. In this subsection, we present a criterion for modular confluence checking.

As an example, consider a λ-calculus with a union operator, called the λG-calculus [28].

siglamU = [signature|
app : Arr(G,G),G -> G ; lam : (G -> G) -> Arr(G,G)
union : G,G -> G ; 0 : G |]

lamU = [rule|
(beta) lam(x.M[x]) @ N => M[N]
(eta) lam(x.M@x) => M
(u-unitr) union(X,0) => X
(u-unitl) union(0,Y) => Y
(u-assoc) union(union(X,Y),Z) => union(X,union(Y,Z))
(u-com) union(X,Y) => union(Y,X) |]

The first two rules are for the λ-calculus, the (u-*) rules formalise the union operator (which may be considered as non-
deterministic choice). This system is not terminating because of (u-com). Moreover, the union rules have many overlaps,
hence is not orthogonal, nor strong confluent. Hence, we cannot apply the previous methods to prove confluence of lamU.

Now we see that this system can be clearly split into the higher-order part (β and η) and the first-order part (the rules
for union). There exists no overlap between these two parts. The situation is formally stated as follows.

Definition 5.13. Two computation systems (
1,C1) and (
2,C2) are mutually orthogonal if they are left-linear and for any
rules l1 ⇒ r1 ∈ C1 and l2 ⇒ r2 ∈ C2, there exists no overlap between l1 ⇒ r1 and l2 ⇒ r2.

We need abstract properties. Let (A,→1) and (A,→2) be two ARSs. We say that →1 and →2 commute if

∀a,b, c ∈ A. a →∗
1 b & a →∗

2 c implies ∃d.b →∗
2 d & c →∗

1 d

and that →1 and →2 have the commuting diamond property if

∀a,b, c ∈ A. a →1 b & a →2 c implies ∃d.b →2 d & c →1 d

The following lemmas on commutation hold [7, pp. 31–32].

Lemma 5.14. If →1 and →2 are confluent and commute then →1 ∪ →2 is also confluent.

Lemma 5.15. If →1 and →2 have the commuting diamond property then they commute.

Since ⇒∗
C = (⇒par

C)∗ by Lemma 5.6, commutation of ⇒C1 and ⇒C2 equals commutation of ⇒par
C1

and ⇒par
C2

. Hence,
to obtain confluence of a computation system (
1 ∪
2,C1 ∪ C2) from two confluent computation systems (
1,C1) and
(
2,C2), it suffices to show that ⇒par

C1
and ⇒par

C2
have the commuting diamond property.

Proposition 5.16. Let (
1,C1) and (
2,C2) be two polymorphic second-order computation systems. If (
1,C1) and (
2,C2) are
mutually orthogonal, then ⇒par

C1
and ⇒par

C2
have the commuting diamond property.

Proof. We show “if u ⇐par
C1

w ⇒par
C2

s then u ⇒par
C2

◦ ⇐par
C1

s” by induction on the sum of the lengths of the proofs of

u ⇐par
C1

w and w ⇒par
C2

s, with a case analysis according to the inference rules in Fig. 7.
Here we consider the most difficult case where the last inference rule used in one of the two proofs is (RuleSubpar) and

the other is (Funpar). The other cases are shown by using the induction hypothesis.

20 M. Hamana et al. / Science of Computer Programming 187 (2020) 102322
1: lam(x.(V’@x))@V

(β-v) (η-v)

V’@V = V’@V

3: lam(x.(lam(x’.H[x’])@x))

(η-v) (β-v)

lam(x’.H[x’]) = lam(x.H[x])

6: let(V,x.x)

(β-let-v) (η-let)

V = V

7: let(let(L,x’.M’[x’]),x.x)

(η-let) (assoc)

let(L,x’.M’[x’]) let(L,x’.let(M’[x’],x.x))

9: let(let(L,x.x),y.N[y])

(assoc) (η-let)

let(L,x.let(x,y.N[y])) let(L,x.N[x])

10: let(let(let(L’,x’.M’[x’]),x.M[x]),y.N[y])

(assoc) (assoc)

let(let(L’,x’.M’[x’]),x.let(M[x],y.N[y]))

∗

let(let(L’,x’.let(M’[x’],y’.M[y’])),y.N[y])

∗
·

Fig. 8. Critical pairs of the λC-calculus (excerpt).

• Let l ⇒ r ∈ C1, t ⇒par
C2

t′ and consider the situation

rθ ′ ⇐=======(RuleSubpar)
lθ = f (x.t) =====(Funpar)⇒ f (x.t′)

for valid substitutions θ, θ ′ for metavariables and type variables such that θ ⇒par
C1

θ ′ . Then by Lemma 5.9, there exists

a valid substitution δ such that lδ = f (x.t′) and θ ⇒par
C2

δ. Hence by the induction hypothesis, there exists a valid

substitution δ′ such that θ ′ ⇒par
C1

δ′ and δ ⇒par
C2

δ′ . By applying (RuleSubpar), we have f (x.t′) = lδ ⇒par
C1

rδ′ . On the other

hand, by Lemma 5.8, we have rθ ′ ⇒par
C2

rδ′ , thus closing the diamond.

Clearly, if the left-linear computation systems (
1,C1) and (
2,C2) have two disjoint signatures (i.e.,
1 ∩
2 = ∅), they
are mutually orthogonal. Thus, we have:

Theorem 5.17. Let (
1,C1) and (
2,C2) be polymorphic second-order computation systems over two disjoint signatures. If (
1,C1)

and (
2,C2) are left-linear and confluent then the computation system (
1 ∪
2,C1 ∪ C2) is meta-confluent.

In particular, we can split the whole system into the higher-order and the first-order parts, provided that they have
disjoint signatures.

Corollary 5.18. Let (
1,C1) be a polymorphic second-order computation system and let (
2,C2) be a first-order computation system,
where
1 and
2 are disjoint signatures. If (
1,C1) and (
2,C2) are left-linear and meta-confluent then the computation system
(
1 ∪
2,C1 ∪ C2) is meta-confluent.

Example 5.19. The computation system lamU given in the beginning of this subsection is left-linear. Splitting it into the
higher-order rules (β and η rules) and the first-order rules for union, both of which are meta-confluent, we see that the
computation system lamU is meta-confluent, and also object confluent. �

6. Example 2: confluence of the computational λ-calculus

In this section, we present a proof of confluence of Moggi’s computational λ-calculus, the λC-calculus [29] using PolySOL.
The λC-calculus is a fundamental calculus for effectful computation, which is an extension of the call-by-value λ-calculus

enriched with let-construct to represent sequential computation.

M. Hamana et al. / Science of Computer Programming 187 (2020) 102322 21
The λC-calculus has seven rules, which are straightforwardly defined in PolySOL as follows:

siglamC = [signature|
app : Arr(a,b),a -> b ; lam : (a -> b) -> Arr(a,b)
let : a,(a -> b) -> b |]

lamC = [rule|
(β-v) lam(x.M[x]) @ V => M[V] ; (η-v) lam(x.V @ x) => V
(β-let-v) let(V, x.M[x]) => M[V] ; (η-let) let(L, x.x) => L
(let1-p) P @ M => let(P,x.x@M)
(let2-v) V @ P => let(P,y.V@y)
(assoc) let(let(L,x.M[x]), y.N[y]) => let(L,x.let(M[x],y.N[y])) |]

It consists of the function symbol lam for λ-abstraction, app (also written as the infix operator @) for application, and
let-construct. We represent the arrow types of the “object-level” λC-calculus by the binary type constructor Arr, and use
the function types a -> b of the “meta-level” polymorphic second-order computation system to represent binders, where
a,b are type variables.

To the best of our knowledge, confluence of the λC-calculus has not been formally proved in the literature including
the original [29] and subsequent works [30,31,13]. Next, we use PolySOL to check the confluence of the simply-typed
λC-calculus.

We impose the distinction of values and non-values as in the λneed-calculus. Here V is a metavariable for values, P
is a metavariable for non-values, and M,N,L are general metavariables for all terms. We tell PolySOL the value/non-value
metavariable distinction by writing the suffixes “-v” and “-p” in the labels. Although the rule set is not so large, the whole
proof is fairly large because it has a number of non-trivial overlaps as a result of the value/non-value distinction.

By invoking the command “criCBV” for critical pair checking in call-by-value, PolySOL checks their critical pairs using
value/non-value metavariables. It reports 23 CPs. All are successfully call-by-value joinable. Because the output is long, we
present only some of them, and explain some details. The reader can obtain the full output easily using the web interface
(see 8.3).

*SOL> criCBV lamC siglamC
1: Overlap (beta-v)-(eta-v)--- M|-> z1.(z1@z1), V’|-> x -----------------------

(beta-v) lam(x.M[x])@V => M[V]
(eta-v) lam(x’.(V’@x’)) => V’

lam(x2.(x2@x2))@V
V@V <-(beta-v)-∧-(eta-v)-> lam(x2.(x2@x2))@V

---> V@V =OK= V@V <---
2: Overlap (beta-v)-(eta-v)--- V|-> lam(x’.(V’@x’)) ---------------------------

(beta-v) lam(x.M[x])@V => M[V]
(eta-v) lam(x’.(V’@x’)) => V’

lam(x.M[x])@lam(x’.(V’@x’))
M[lam(x’.(V’@x’))] <-(beta-v)-∧-(eta-v)-> lam(x.M[x])@V’

---> M[V’] =OK= M[V’] <---
..

The CP (2:) results from the overlap between (beta-v) and (eta-v), where the metavariable V matches with the
root of the lhs of (eta-v). Because ordinary critical pair checking does not check a metavariable position as an overlap,
this overlap is particular to the call-by-value setting. The reason it should be regarded as an overlap is that V is either a
variable or an abstraction because it represents a value. In the case of λC, the rule (eta-v) is the only rule having a value
as lhs, which makes it matchable. The CPs (4:) and (5:) in the following have the same reason.

..
4: Overlap (eta-v)-(eta-v_x)--- V|-> lam(x’.(V’25@x’)), V’|-> z1.V’25 ---------

(eta-v) lam(x.(V@x)) => V
(eta-v_x) lam(x’.(V’[x]@x’)) => V’[x]

lam(x.(lam(x’.(V’25@x’))@x))
lam(x’.(V’25@x’)) <-(eta-v)-∧-(eta-v_x)-> lam(x.(V’25@x))

---> V’25 =OK= V’25 <---
5: Overlap (beta-let-v)-(eta-v)--- V|-> lam(x’.(V’@x’)) -----------------------

(beta-let-v) let(V,x.M[x]) => M[V]
(eta-v) lam(x’.(V’@x’)) => V’

let(lam(x’.(V’@x’)),x.M[x])
M[lam(x’.(V’@x’))] <-(beta-let-v)-∧-(eta-v)-> let(V’,x.M[x])

---> M[V’] =OK= M[V’] <---
..

We depict a graphical representation of some of them in Fig. 8. The following check illuminates the call-by-value CP
checking.

22 M. Hamana et al. / Science of Computer Programming 187 (2020) 102322
..
11: Overlap (let1-p)-(beta-v)--- P|-> lam(x’.M’[x’])@V’ ------------------------
when M’|-> x95.VM’[x95], M|-> VM
(let1-p) P@M => let(P,x.(x@M))
(beta-v) lam(x’.M’[x’])@V’ => M’[V’]

(lam(x’.VM’[x’])@V’)@VM
let(lam(x’.VM’[x’])@V’,x92.(x92@VM)) <-(let1-p)-∧-(beta-v)-> VM’[V’]@VM

---> VM’[V’]@VM =OK= VM’[V’]@VM <---
11: Overlap (let1-p)-(beta-v)--- P|-> lam(x’.M’[x’])@V’ ------------------------
when M’|-> x95.VM’[x95], M|-> PM
(let1-p) P@M => let(P,x.(x@M))
(beta-v) lam(x’.M’[x’])@V’ => M’[V’]

(lam(x’.VM’[x’])@V’)@PM
let(lam(x’.VM’[x’])@V’,x92.(x92@PM)) <-(let1-p)-∧-(beta-v)-> VM’[V’]@PM

---> let(PM,y1.(VM’[V’]@y1)) =E= let(PM,y4.(VM’[V’]@y4)) <---
11: Overlap (let1-p)-(beta-v)--- P|-> lam(x’.M’[x’])@V’ ------------------------
when M’|-> x6.PM’[x6], M|-> VM
..
11: Overlap (let1-p)-(beta-v)--- P|-> lam(x’.M’[x’])@V’ ------------------------
when M’|-> x6.PM’[x6], M|-> PM
..
#Joinable! (Total 23 CPs)

The four CPs above are caused by a single CP (11:) generated by an overlap between (let1-p) and (beta-v) as

11: (lam(x’.M’[x’])@V’)@M

(let1-p) (β-v)

let(lam(x’.M’[x’])@V’,x.(x@M)) M’[V’]@M

This CP results from the fact that the non-value metavariable P in (let1-p) can match with the lhs
lam(x’.M’[x’])@V’ of (beta-v), which is the underlined part of the above CP. An important fact is that this is
not joinable at the level of rewriting on meta-terms. The right M’[V’]@M is a normal form, whereas the left is reduced to a
different normal form by (beta-v) as

let(lam(x’.M’[x’])@V’, x.(x@M)) ⇒C let(M’[V’], x.(x@M))

However, this is call-by-value joinable (Definition 4.5), meaning that it is joinable by case analysis varying M,M’ over
value/non-value metavariables. In the output presented above, the part like “when M’|-> x95.VM’[x95], M|-> PM”
denotes checking the case in which M’ is a value metavariable and M is a non-value metavariable. We have adopted a
naming convention by which a metavariable starting with V is a value metavariable and a metavariable starting with P is
a non-value metavariable (Definition 2.3). All possible instantiations of M,M’ as value/non-value metavariables are the four
cases described above. In each case, the left meta-term in a CP is reduced to the right meta-term.

Termination of λC has been proved [31]. Hence, by Theorem 4.9, we have object confluence of lamC. This concludes that
the λC-calculus is confluent.

7. Example 3: coherence of skew-monoidal categories

We show a further example, which is different from the λ-calculus. A skew-monoidal category [32,33] is a category C
together with a distinguished object I, a functor ⊗ :C ×C →C (monoidal product) and natural transformations

λA : I ⊗ A → A ρA : A → A ⊗ I αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C)

subject to the axioms:

(a) I ⊗ I
λI

I

ρI

I

(b) (A ⊗ I) ⊗ B
αA,I,B

A ⊗ (I ⊗ B)

idA⊗λB

A ⊗ B

ρA⊗idB

A ⊗ B

(c) (I ⊗ A) ⊗ B

λA⊗idB

αI,A,B I ⊗ (A ⊗ B)

λA⊗B

A ⊗ B

(d) (A ⊗ B) ⊗ I
αA,B,I

A ⊗ (B ⊗ I)

A ⊗ B
ρA⊗B idA⊗ρB

(e) (A ⊗ (B ⊗ C)) ⊗ D
αA,B⊗C,D

A ⊗ ((B ⊗ C) ⊗ D)

idA⊗αB,C,D

((A ⊗ B) ⊗ C) ⊗ D

αA,B,C ⊗idD

αA⊗B,C,D
(A ⊗ B) ⊗ (C ⊗ D)

αA,B,C⊗D
A ⊗ (B ⊗ (C ⊗ D))

M. Hamana et al. / Science of Computer Programming 187 (2020) 102322 23
The idea of this categorical structure is as follows. A monoidal category [34] is a category equipped with a “monoidal”
product ⊗ and three natural isomorphisms λ,ρ,α, considered as the unit and associative “laws” for the monoidal product.
A skew-monoidal category is a variation of it, in which λ,ρ,α are just one-directional natural transformations, rather than
isomorphisms. Since skew-monoidal categories are related to relative monads [35], these are related to computer science.

Uustalu [33] proved a remarkable property called coherence, which states that every formal arrow having a certain form
of codomain has a unique normal form under the axioms of skew-monoidal category. His proof employed normalisation by
evaluation technique. Here we show the unique normal form property by a different technique, namely, our critical pair
checking method for polymorphic computation rules using PolySOL.

7.1. Laws

Following Uustalu’s paper [33], the axioms of a skew-monoidal category C are equationally expressed as the following
laws on arrows of C, which we call SkewMon.

Laws of the composition
(idL) id ◦ f = f (idR) f = f ◦ id
(assoc) (f ◦ g) ◦ h = f ◦ (g ◦ h)

Bi-functoriality of ⊗
(⊗-id) idA ⊗ idB = idA⊗B

(⊗-comp) (h ⊗ k) ◦ (f ⊗ g) = (h ◦ f) ⊗ (k ◦ g)

Laws of natural transformations λ,ρ,α
(λ-nat) λ ◦ (id ⊗ f) = f ◦ λ (ρ-nat) (f ⊗ id) ◦ ρ = ρ ◦ f
(α-nat) α ◦ (f ⊗ g) ⊗ h = f ⊗ (g ⊗ h) ◦ α

Laws of skew monoidal category
(a) λ ◦ ρ = id (b) (id ⊗ λ) ◦ α ◦ (ρ ⊗ id) = id
(c) λ ◦ α = λ ⊗ id (d) α ◦ ρ = id ⊗ ρ
(e) (id ⊗ α) ◦ α ◦ (α ⊗ id) = α ◦ α

These laws can be regarded as textual representation of basic commutative diagrams. Namely, these specify which two
arrows having the same source and target are equal (i.e. commute). For example, the law (e) is formally of the following
form:

� (idA⊗αB, C, D)◦αA, B ⊗ C, D◦ (αA ⊗ B, C, D⊗ idD) = αA, B, C ⊗ D◦αA ⊗ B, C, D : Hom((A ⊗ B) ⊗ C) ⊗ D, A ⊗ (B ⊗ (C ⊗ D)))

This specifies the equality of two arrows from (A ⊗ B) ⊗ C) ⊗ D to A ⊗ (B ⊗ (C ⊗ D)), equivalently saying that the diagram
(e) commutes.

In the description of SkewMon, we omitted the subscripts of id, λ,ρ,α and types, but the laws officially have suitable
subscripts, contexts and types, as the above highlights. Note that different occurrences of “α” has different subscripts. This
is actually the point we have mentioned in Problem 2 in §1.4. Describing correct subscripts manually for all the rules is
tedious, but necessary to check overlaps between rules.

Since confluence implies the unique normal form property [12,7], we show confluence of the computation rules obtained
from SkewMon by orienting the laws as left-to-right computation rules.

7.2. Proof with PolySOL

We formulate a skew-monoidal category by using a signature

sigskew = [signature|
times : Hom(a,c),Hom(b,d) -> Hom(Pr(a,b),Pr(c,d))
app : Hom(b,c),Hom(a,b) -> Hom(a,c) ; id : Hom(a,a)
lmd : Hom(Pr(I,a),a) ; rho : Hom(a,Pr(a,I))
alpha : Hom(Pr(Pr(a,b),c),Pr(a,Pr(b,c))) |]

where we assume the binary type constructors Hom and Pr for the hom-sets and the monoidal product ⊗, and the function
symbol times (which is written as the infix “*” below) is for arrow’s ⊗, app (which is written as the infix “@” below) for
the composition ◦ and the rest are for id, λ,ρ,α. We formulate the laws as computation rules in PolySOL, where capital
letters such as F,G are metavariables for arrows.

skew = [rule|
(idL) id @ F => F ; (idR) F @ id => F
(ox-id) id * id => id

24 M. Hamana et al. / Science of Computer Programming 187 (2020) 102322
(ox-comp) (H * K) @ (F * G) => (H @ F) * (K @ G)
;
(alpha-nat) alpha @ ((F * G) * H) => (F * (G * H)) @ alpha
(lmd-nat) lmd @ (id * F) => F @ lmd
(rho-nat) (F * id) @ rho => rho @ F
;
(a) lmd @ rho => id
(b) (id * lmd) @ (alpha @ (rho * id)) => id
(b’) ((id * lmd) @ alpha) @ (rho * id) => id
(c) lmd @ alpha => lmd * id
(d) alpha @ rho => id * rho
(e) (id * alpha) @ (alpha @ (alpha * id)) => alpha @ alpha
(e’) ((id * alpha) @ alpha) @ (alpha * id) => alpha @ alpha
|]

The rules are straightforward implementation of the original laws, except for the following point:

• We did not include the associative law of the composition:

(assoc) (F @ G) @ H => F @ (G @ H)

• Instead, we added the laws (b’) and (e’), which are variants of (b) and (e), where we applied (assoc) to their
lhss.

The reason of this modification is adding (assoc) as a rule greatly increases critical pairs. Since the lhss of almost all
rules of skew have the composition @, they overlap with the subterm (F @ G) of lhs of (assoc). Many CPs generated
by this way are not joinable. Therefore, we decided (assoc) should not be considered as a computation rule. Instead, we
regard @ as a flatten composition operator like a string concatenation in string rewriting system.

By invoking the command “crity” for critical pair checking with types, PolySOL checks their critical pairs using the
inferred well-typed rules. It reports one non-joinable critical pair out of 6.

*SOL> crity skew sigskew
1: Overlap (idL)-(idR)--- F’|-> id, F|-> id -----------------------------------

(idL) (id@F) => F
(idR) F’@id => F’

id@id
id <-(idL)-∧-(idR)-> id
---> id =OK= id <---

2: Overlap (ox-comp)-(ox-id)--- H|-> id, K|-> id ------------------------------
(ox-comp) (H * K)@(F * G) => (H@F) * (K@G)
(ox-id) id * id => id

(id * id)@(F * G)
(id@F) * (id@G) <-(ox-comp)-∧-(ox-id)-> id@(F * G)

---> F * G =OK= F * G <---
3: Overlap (ox-comp)-(ox-id)--- F|-> id, G|-> id ------------------------------

(ox-comp) (H * K)@(F * G) => (H@F) * (K@G)
(ox-id) id * id => id

(H * K)@(id * id)
(H@id) * (K@id) <-(ox-comp)-∧-(ox-id)-> (H * K)@id

---> H * K =OK= H * K <---
4: Overlap (lmd-nat)-(ox-id)--- F|-> id --

(lmd-nat) lmd@(id * F) => F@lmd
(ox-id) id * id => id

lmd@(id * id)
id@lmd <-(lmd-nat)-∧-(ox-id)-> lmd@id

---> lmd =OK= lmd <---
5: Overlap (rho-nat)-(ox-id)--- F|-> id --

(rho-nat) (F * id)@rho => rho@F
(ox-id) id * id => id

(id * id)@rho
rho@id <-(rho-nat)-∧-(ox-id)-> id@rho

---> rho =OK= rho <---
6: Overlap (alpha-nat)-(ox-id)--- F|-> id, G|-> id -------------------------------

(alpha-nat) alpha@((F * G) * H) => (F * (G * H))@alpha
(ox-id) id * id => id

alpha@((id * id) * H)
(id * (id * H))@alpha <-(alpha-nat)-∧-(ox-id)-> alpha@(id * H)

---> (id * (id * H))@alpha =#= alpha@(id * H) <---
#NON 1 joinable... (Total 6 CPs)

To make the non-joinable CP (6:) joinable, we add a new computation rule

M. Hamana et al. / Science of Computer Programming 187 (2020) 102322 25
skewext = [rule|
(ext1) alpha@(id * H) => (id * (id * H))@alpha |]

This is a sound rule, because it is nothing but the naturality of α.

(A ⊗ B) ⊗ C
αA,B,C

idA⊗B⊗h

A ⊗ (B ⊗ C)

idA⊗(idB⊗h)

(A ⊗ B) ⊗ C ′
αA,B,C ′

(ext1)

A ⊗ (B ⊗ C ′)

Note that each alpha and id in the rule (ext1) have officially different subscripts as the above diagram shows. They
are automatically supplied in PolySOL by the type inference algorithm.

The diagram shows also a “2-cell” (ext1) transforming the down-lower-right arrow to the upper-right-down arrow,
which is considered as a “proof” why the diagram commutes. Likewise, every rule in skew is considered as such a “proof”,
therefore if two arrows (represented as meta-terms) with the same source and target has the unique normal form using
skew, then it has a proof of commutativity.

We check again skew with the extended rule skewext.

*SOL> crity (skewext++skew) sigskew
..
4: Overlap (alpha-nat)-(ox-id)--- F|-> id, G|-> id ----------------------------

(alpha-nat) alpha@((F * G) * H) => (F * (G * H))@alpha
(ox-id) id * id => id

alpha@((id * id) * H)
(id * (id * H))@alpha <-(alpha-nat)-∧-(ox-id)-> alpha@(id * H)

---> (id * (id * H))@alpha =OK= (id * (id * H))@alpha <---
..
7: Overlap (ext1)-(ox-id)--- H|-> id --

(ext1) alpha@(id * H) => (id * (id * H))@alpha
(ox-id) id * id => id

alpha@(id * id)
(id * (id * id))@alpha <-(ext1)-∧-(ox-id)-> alpha@id

---> alpha =OK= alpha <---
#Joinable! (Total 7 CPs)

PolySOL reports 7 critical pairs, which are all successfully joinable. This shows local confluence of the computation sys-
tem (skewext++skew). We next consider critical pairs generated by the flatten composition. This is by computing
overlaps between two rules l1 ⇒ r1 and l2 ⇒ r2, where the prefix (w.r.t. the composition) of l1 is unifiable with the suffix
(w.r.t. the composition) of l2, as critical pairs of string rewriting. There are 7 overlaps: (b)-(e), (λ-nat)-(e), (λ-nat)-(ρ-nat),
(ρ-nat)-(b), (ρ-nat)-(e), (α-nat)-(c), (c)-(d) and all of these are joinable.

Finally, we check strong normalisation of skew using PolySOL’s command solsn.

*SOL> solsn skew sigskew
..
This is a first-order system.

******** FO SN check ********
Check SN using NaTT (Nagoya Termination Tool)
Input TRS:

1: app(id(),F) -> F
2: app(F,id()) -> F
3: times(id(),id()) -> id()

..
Direct POLO(bPol) ... removes: 4 8 1 3 5 10 7 14 12 11 9 13 6 2

times w: 2 * x1 + 2 * x2 + 2
lmd w: 1
id w: 1
rho w: 1
alpha w: 4
app w: x1 + 2 * x2 + 1

Number of strict rules: 0
>>YES

Since the types of all the function symbols in sigskew are up to first-order (N.B. Hom is just an algebraic data type
constructor, not the arrow type constructor), PolySOL tried to call an external first-order termination checker NaTT (Nagoya
Termination Tool) [36], and NaTT succeeded in proving termination. The technique used there was to assign a polynomial
to each function symbol as

[[⊗]](x1, x2) = 2x1 + 2x2 + 2, [[◦]](x1, x2) = x1 + 2x2 + 1, [[λ]] = [[id]] = [[ρ]] = 1, [[α]] = 4

26 M. Hamana et al. / Science of Computer Programming 187 (2020) 102322
Then all rules are strictly decreasing using the interpretation. Hence we conclude that it is confluent, which implies that
SkewMon has the unique normal form property.

Moreover, we have an additional result: the theory of Skew is decidable, meaning that any equality on the arrows is
decidable and checked by rewriting to normal forms.

8. Implementation of PolySOL

In this section, we describe some details of the PolySOL system. The PolySOL system consists of about 8000 line Haskell
codes, and works on GHCi, the interpreter of Glasgow Haskell Compiler (tested on version 7.6.2 and 8.0.2). PolySOL uses
Template Haskell [16] with a custom parser generated by Alex (for lexer) and Happy (for parser) to provide a readable
notation for signatures and rules. There is a command line interface using GHCi (§8.2). There is also a web interface (§8.3).

8.1. Syntax

PolySOL’s language is realised as an embedded domain specific language in Haskell by using the quasi-quotation feature
of Template Haskell. The syntax [signature|..] and [rule|..] are quasi-quotations, and the keywords signature
and rule are implemented as “quasi-quoters” of Template Haskell, which parse the contents of strings and return the
algebraic data of parse trees. PolySOL’s syntax has a simple layout rule. Newline is regarded as a separator of declarations
in signature and rules. For example,

sig = [signature|
lam : (a -> b) -> Arr(a,b)
app : Arr(a,b),a -> b |]

If one wants to write the declarations sequentially, one can also use the semicolon “;” for the separator, e.g.

sig = [signature| lam : (a -> b) -> Arr(a,b) ; app : Arr(a,b),a -> b |]

The label for a rule is a string starting with a lower case letter, enclosed by round brackets, such as “(beta)”, which is
placed before a rule.

PolySOL has the following naming rule for identifiers. The start symbol of an identifier should be

• function symbol: lower case letter, e.g., lam, app
• metavariable: capital letter, e.g., M, N1
• (bound) variable: lower case letter, e.g., x, y0
• type constructor: capital letter, e.g., Arr, Hom
• type variable: lower case letter, e.g. a, b

8.2. The command line interface

The command line interface is the most fundamental use of PolySOL. The user invokes GHCi and loads a file containing
the definition of signature and rules. For example, by invoking

% ghci 01need.hs

PolySOL starts with loading the file “01need.hs”, which contains the line

import SOL

to import PolySOL system and definitions siglamC and lamC given in §6. The file “01need.hs” is also available in the
web inference.

To check confluence or strong normalisation of the computation system, the user invokes a SOL’s command implemented
as a Haskell function such as

*SOL> criCBV lamC siglamC

for critical pair checking of computation using value/non-value distinction in §6. Another example is

*SOL> crity skew sigskew

for critical pair checking with types as done in §7.
PolySOL has the following commands implemented as Haskell functions:

M. Hamana et al. / Science of Computer Programming 187 (2020) 102322 27
Result CSI^ho PolySOL

YES 49 66
NO 15 16

MAYBE 30 12
TOTAL 94 94

The table shows the number of decided results by each tool. The result YES/NO is a decided result of CR. MAYBE is a result when the
tool cannot decide. The total of a tool is the number of problems. The results and detailed outputs of each tool in the competition were
recorded in the official site: http://cops.uibk.ac.at/results/?y=2018&c=HRS.

Fig. 9. Results of HRS category in Confluence Competition 2018.

• criCBV <rules> <signature>
Enumerating critical pairs of a polymorphic computation system using value/non-value distinction.

• crity <rules> <signature>
Enumerating critical pairs of a polymorphic computation system.

• sn <rules> <signature>
Checking SN of a computation system using the General Schema criterion.

• solsn <rules> <signature>
Checking SN of a computation system using multiple methods.

• cr <rules> <signature>
Checking confluence of a computation system using multiple methods.

8.3. Web interface

There is also a web interface for PolySOL, which is available at the first author Makoto Hamana’s homepage. The exam-
ples in this paper have been stored in the web interface and one can chose an example from the pull-down menu.

PolySOL supports two file formats:

• SOL format (.hs) implemented as a Haskell embedded domain specific language used throughout the paper, and
• TRS format (.trs) used in the Confluence Competition.

The TRS format is also used in the evaluation discussed in the next section.

9. Evaluation

9.1. Results in Confluence Competition 2018

PolySOL participated in the Higher-Order Rewriting (HRS) category of the International Confluence Competition 2018
(CoCo’18)1 held at the Federated Logic Conference (FLoC 2018) in Oxford, U.K. [37].

This event had automatic tools competing for the number of decided results of confluence problems. We inferred that
participation in the competition would demonstrate how PolySOL was more effective than existing tools.

In the HRS category, 94 problems of higher-order rewrite systems (which are only simply-typed, not polymorphic) [8,
9] were given. Because our polymorphic computation systems subsume the second-order fragment of higher-order rewrite
systems, PolySOL is able to address the simply-typed confluence problems that are provided for the competition. We have
adapted PolySOL to support the TRS format, which is the format of rewrite systems in the competition.

Two tools participated in the HRS category: CSI^ho [38] and PolySOL (named SOL there). Results show that PolySOL
solved more problems than CSI^ho (see Fig. 9). This outcome derives from the fact that PolySOL implemented new criteria
of confluence, strong closedness, and modular checking developed in §5.

9.2. Benchmark

To assess the behaviour of these tools more precisely, we again tested the tools against the problems of the Confluence
Computation 2018 in our own environment. We conducted the benchmark test on a machine with Intel(R) Xeon E7-4809,
2.00 GHz 4 CPU (8 cores each), 256 GB memory, Red Hat Enterprise Linux 7.3, and timeout set to 120 s. The results are
described on a relevant web page2. We excerpt the results of problems 514–789 in Fig. 10 with short comments in the
final column of the table. Comments show the methods used by PolySOL to solve problems. The new confluence criteria

1 Confluence Competition official site: http://project-coco.uibk.ac.at/2018/.
2 http://www.cs.gunma-u.ac.jp/hamana/polysol/scpro.html

http://cops.uibk.ac.at/results/?y=2018&c=HRS
http://project-coco.uibk.ac.at/2018/
http://www.cs.gunma-u.ac.jp/hamana/polysol/scpro.html

28 M. Hamana et al. / Science of Computer Programming 187 (2020) 102322
Prob. No. CSI^ho (sec.) PolySOL (sec.) Used method

514 YES 1.448 YES 0.412
515 YES 0.772 YES 0.032
516 YES 1.459 YES 0.041
517 MAYBE 0.482 NO 0.03 non-joinable CP check
518 MAYBE 0.617 NO 0.043 non-joinable CP check
723 MAYBE 58.633 MAYBE 0.489
724 YES 0.734 YES 0.023
725 NO 0.747 NO 0.041
726 YES 0.676 YES 0.03
727 NO 0.656 NO 0.023
728 MAYBE 58.637 YES 0.33 joinable CP check
729 MAYBE 58.703 MAYBE 0.341
730 YES 0.698 YES 0.614
746 MAYBE 0.517 MAYBE 0.023
747 MAYBE 0.586 MAYBE 0.029
748 MAYBE 0.508 MAYBE 0.316
749 MAYBE 0.559 NO 0.05 non-joinable CP check
750 MAYBE 0.669 YES 0.046 joinable CP check
751 MAYBE 0.689 YES 0.045 joinable CP check
752 MAYBE 0.671 MAYBE 0.319
758 MAYBE 0.631 NO 0.079 non-joinable CP check
759 MAYBE 58.642 MAYBE 0.039
764 NO 0.635 NO 0.03
766 NO 0.566 MAYBE 0.023
767 NO 0.594 MAYBE 0.302
768 MAYBE 2.052 YES 0.279 joinable CP check
769 MAYBE 0.504 YES 0.038 joinable CP check
772 MAYBE 58.566 YES 0.027 strong closedness
773 MAYBE 0.59 NO 0.035 non-joinable CP check
775 MAYBE 58.705 YES 0.026 strong closedness
776 MAYBE 58.721 YES 15.117 modularity
777 NO 0.699 NO 0.038
780 MAYBE 0.611 YES 0.239 joinable CP check
781 MAYBE 58.719 YES 0.186 strong closedness
782 MAYBE 58.571 YES 0.028 strong closedness
783 MAYBE 58.573 YES 0.027 strong closedness
784 MAYBE 0.656 MAYBE 0.054
785 MAYBE 0.645 MAYBE 0.059
789 MAYBE 0.5 MAYBE 0.027

The unit of checking time shown in the next column of each result is second.

Fig. 10. Detailed results for problems used in Confluence Competition 2018 (excerpt).

are effective. CSI^ho reports counter-examples to confluence for some cases (problems 766 and 767) that PolySOL cannot
find. After the competition, we improved PolySOL for more exact matching with the specifications of rewrite systems used
in the competition. For this reason, some results of PolySOL in the above benchmark URL show changes or improvements
from those in the competition.

9.3. On checking speed

Another interesting point in this benchmark is checking speed. Results show that PolySOL is more than 10 times faster
than CSI^ho for almost all of the problems. One reason might be that PolySOL has its own termination checker, which
is simple and fast [1]. However, CSI^ho sometimes calls an external higher-order termination checker, which is generally
expensive. For PolySOL, we directly implemented the theory of confluence checking developed in this paper using no clever
implementation trick. The benchmark result demonstrates that, for the case of confluence, such a simple and theoretically
sound strategy is an effective method to implement an automated checking tool.

10. Summary and related work

10.1. Summary

We have presented a new framework of polymorphic computation rules that can accommodate a distinction between
values and non-values. The framework was demonstrated to be suitable for formulating and analysing fundamental calculi
of programming languages. We have given a type inference algorithm and criteria to check the confluence property of
polymorphic rules. These have provided a handy method to prove confluence of polymorphic second-order computation
rules with call-by-value. We have demonstrated the effectiveness of our methodology by examining sample calculi using
our automated confluence checking tool, PolySOL.

M. Hamana et al. / Science of Computer Programming 187 (2020) 102322 29
10.2. Related work

Mayr and Nipkow studied critical pairs for the confluence of higher-order rewrite systems [8,9]. Their rewrite rule format
was rules on simply-typed λ-terms modulo βη-equivalence. There are no polymorphic types nor value/non-value distinc-
tions. Therefore, no example (λC, λneed and skew monoidal category) which has confluence described in this paper can be
formulated directly or can be checked in their framework.

The systems ACPH [39] and CSI^ho [38] can automatically check confluence of higher-order rules. They are based on the
Mayr–Nipkow higher-order rule format. Therefore, these tools have neither features of polymorphic types nor value/non-
value distinction. Therefore, all of our examples are beyond the scope of the existing confluence checking systems. In this
respect, this report is the first description of our system, to the best of our knowledge, the first automatic tool that can
check confluence of the call-by-value variants of the λ-calculus directly, as described in the paper.

A framework of polymorphic higher-order rewrite rules was presented by Jouannaud et al. [40,41]. Our framework
is similar, but with several fundamentally important differences. For instance, our framework is based on (polymorphic)
second-order algebraic theories [3,42], whereas theirs is based on a polymorphic λ-calculus. The main purpose of [40,41]
was establishment of a termination criterion for higher-order rewrite rules. The issue of confluence of polymorphic rules
has remained unaddressed. To the best of our knowledge, the present paper is the first to describe a study of confluence of
a general kind of polymorphic second-order rewrite rules.

We presented a type inference algorithm of polymorphic computation rules, which has not been given in the context of
rewriting theory, although it might be standard in the context of the theory of programming languages. Lack of a suitable
type inference algorithm in the theory of rewriting has affected existing higher-order confluence tools such as ACPH and
CSI^ho. These tools force the user to write more detailed type information in rewrite rule specifications than PolySOL. The
user needs to declare all free and bound variables used in the rules, with their types. Actually, PolySOL’s rule specification
is simpler because of the type inference. Our algorithm might also be beneficial to other tools to improve this situation.

For our earlier work [1], we developed a simply-typed framework of second-order equational logic and computation
rules. We also developed a tool SOL for checking methods of termination confluence. It lacked proper polymorphism and
the treatment of call-by-value. For that reason, the examples examined in this paper could not be handled directly.

Our earlier paper [42] presented a general framework of multiversal polymorphic algebraic theories based on polymor-
phic abstract syntax [43], and developed polymorphic equational logic and their algebraic models. It admits multiple type
universes and higher-kinded polymorphic types, hence it is richer than the present setting. However, we developed neither
polymorphic computation rules, call-by-value, nor their confluence.

Acknowledgements

The first author is grateful to Masahito Hasegawa for his question about methods to check confluence of Moggi’s compu-
tational λ-calculus using the earlier tool, SOL. The author was thereby enlightened to the necessity of proper treatment of
call-by-value calculi, which led to the framework described in this paper. This work was partly supported by JSPS KAKENHI
Grant Numbers JP17K00092, JP17K00005 and JP19K11891.

References

[1] M. Hamana, How to prove your calculus is decidable: practical applications of second-order algebraic theories and computation, Proc. ACM Program.
Lang. 1 (22) (2017) 1–28.

[2] M. Fiore, C.-K. Hur, Second-order equational logic, in: Proc. of CSL’10, in: LNCS, vol. 6247, 2010, pp. 320–335.
[3] M. Fiore, O. Mahmoud, Second-order algebraic theories, in: Proc. of MFCS’10, in: LNCS, vol. 6281, 2010, pp. 368–380.
[4] S. Staton, An algebraic presentation of predicate logic, in: Proc. of FoSSaCS’13, 2013, pp. 401–417.
[5] S. Staton, Instances of computational effects: an algebraic perspective, in: Proc. of LICS’13, 2013, pp. 519–528.
[6] S. Staton, Algebraic effects, linearity, and quantum programming languages, in: Proc. of POPL’15, 2015, pp. 395–406.
[7] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, 1998.
[8] T. Nipkow, Higher-order critical pairs, in: Proc. 6th IEEE, in: Symp. Logic in Computer Science, 1991, pp. 342–349.
[9] R. Mayr, T. Nipkow, Higher-order rewrite systems and their confluence, Theor. Comput. Sci. 192 (1) (1998) 3–29.

[10] G.D. Plotkin, Call-by-name, call-by-value and the lambda-calculus, Theor. Comput. Sci. 1 (2) (1975) 125–159.
[11] J. Maraist, M. Odersky, P. Wadler, The call-by-need lambda calculus, J. Funct. Program. 8 (3) (1998) 275–317.
[12] G. Huet, Confluent reductions: abstract properties and applications to term rewriting systems, J. ACM 27 (4) (1980) 797–821.
[13] Y. Ohta, M. Hasegawa, A terminating and confluent linear lambda calculus, in: Proc. of RTA’06, 2006, pp. 166–180.
[14] D. Knuth, P. Bendix, Simple word problems in universal algebras, in: Computational Problem in Abstract Algebra, Pergamon Press, Oxford, 1970,

pp. 263–297.
[15] D. Miller, A logic programming language with lambda-abstraction, function variables, and simple unification, J. Log. Comput. 1 (4) (1991) 497–536.
[16] T. Sheard, S.P. Jones, Template metaprogramming for Haskell, in: Proc. Haskell Workshop, 2002, 2002.
[17] H. Barendregt, The Lambda Calculus: Its Syntax and Semantics, North Holland, 1984.
[18] M. Hamana, Polymorphic rewrite rules: confluence, type inference, and instance validation, in: Proc. of 14th International Symposium on Functional

and Logic Programming (FLOPS’18), in: LNCS, vol. 10818, 2018, pp. 99–115.
[19] M. Hamana, Universal algebra for termination of higher-order rewriting, in: Proc. of RTA’05, in: LNCS, vol. 3467, 2005, pp. 135–149.
[20] M. Hamana, Higher-order semantic labelling for inductive datatype systems, in: Proc. of PPDP’07, ACM Press, 2007, pp. 97–108.
[21] M. Hamana, Semantic labelling for proving termination of combinatory reduction systems, in: Proc. WFLP’09, in: LNCS, vol. 5979, 2010, pp. 62–78.
[22] M. Hamana, Free
-monoids: a higher-order syntax with metavariables, in: Proc. of APLAS’04, in: LNCS, vol. 3302, 2004, pp. 348–363.

http://refhub.elsevier.com/S0167-6423(19)30118-2/bib534F4Cs1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib534F4Cs1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib326E6443534Cs1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib326E64416C67s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib53616D464F53s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib53616D496E7374616E6365s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib53616D51s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib426161646572s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib4E69706B6F77s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib4E69706B6F772D544353s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib43424E434256s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib4D6172616973742D6E656564s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib48756574s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib4F6874612D4861736567617761s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib4B42s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib4B42s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib6C6C616Ds1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib54656D706C6174654861736B656C6Cs1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib6C616D6264612D63616C63s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib706F6372s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib706F6372s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib435253s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib48534Cs1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib534C2D435253s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib66726565s1

30 M. Hamana et al. / Science of Computer Programming 187 (2020) 102322
[23] M. Hamana, Correct looping arrows from cyclic terms: traced categorical interpretation in Haskell, in: Proc. of FLOPS’12, in: LNCS, vol. 7294, 2012,
pp. 136–150.

[24] L. Damas, R. Milner, Principal type-schemes for functional programs, in: Proc. POPL’82, 1982, pp. 207–212.
[25] R. Milner, Communicating and Mobile Systems – The π -Calculus, CUP, 1999.
[26] T. Suzuki, K. Kikuchi, T. Aoto, Y. Toyama, Critical pair analysis in nominal rewriting, in: Proc. of SCSS’16, 2016, pp. 156–168.
[27] P. Aczel, A General Church-Rosser Theorem, Tech. rep., University of Manchester, 1978.
[28] M. Hamana, K. Matsuda, K. Asada, The algebra of recursive graph transformation language UnCAL: complete axiomatisation and iteration categorical

semantics, Math. Struct. Comput. Sci. 28 (2) (2018) 287–337, https://doi .org /10 .1017 /S096012951600027X.
[29] E. Moggi, Computational Lambda-Calculus and Monads, LFCS ECS-LFCS-88-66, University of Edinburgh, 1988.
[30] A. Sabry, P. Wadler, A reflection on call-by-value, ACM Trans. Program. Lang. Syst. 19 (6) (1997) 916–941.
[31] S. Lindley, I. Stark, Reducibility and ��-lifting for computation types, in: Proc. of TLCA’05, 2005, pp. 262–277.
[32] K. Szlachányi, Skew-monoidal categories and bialgebroids, Adv. Math. 231 (3–4) (2012) 1694–1730.
[33] T. Uustalu, Coherence for skew-monoidal categories, in: Proc. 5th Workshop on Mathematically Structured Functional Programming, MSFP’14, 2014,

pp. 68–77.
[34] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics, vol. 5, Springer-Verlag, 1971.
[35] T. Altenkirch, J. Chapman, T. Uustalu, Monads need not be endofunctors, Log. Methods Comput. Sci. 11 (1) (2015).
[36] A. Yamada, K. Kusakari, T. Sakabe, Nagoya termination tool, in: Proc. Joint 25th RTA and 12th TLCA, in: LNCS, vol. 8560, 2014, pp. 466–475.
[37] T. Aoto, M. Hamana, N. Hirokawa, A.M.J. Nagele, N. Nishida, K. Shintani, H. Zankl, Confluence Competition 2018, in: Proc. of 3rd International Conference

on Formal Structures for Computation and Deduction, FSCD 2018, in: LIPIcs, vol. 108, 2018, chap. 32, 5 pp.
[38] J. Nagele, B. Felgenhauer, A. Middeldorp, CSI: new evidence – a progress report, in: Proc. of CADE’17, in: LNCS (LNAI), vol. 10395, 2017, pp. 385–397.
[39] K. Onozawa, K. Kikuchi, T. Aoto, Y. Toyama, ACPH: system description, in: 6th Confluence Competition (CoCo 2017), 2017, p. 76.
[40] J.-P. Jouannaud, A. Rubio, Polymorphic higher-order recursive path orderings, J. ACM 54 (1) (2007) 2, 48 pp.
[41] J.-P. Jouannaud, A. Rubio, Normal higher-order termination, ACM Trans. Comput. Log. 16 (2) (2015) 13, 38 pp.
[42] M. Fiore, M. Hamana, Multiversal polymorphic algebraic theories: syntax, semantics, translations, and equational logic, in: 28th Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS, 2013, 2013, pp. 520–529.
[43] M. Hamana, Polymorphic abstract syntax via Grothendieck construction, in: FoSSaCS’11, in: LNCS, vol. 3467, 2011, pp. 381–395.

http://refhub.elsevier.com/S0167-6423(19)30118-2/bib464C4F5053s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib464C4F5053s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib44616D61734D696C6E6572s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib50692D63616C63s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib4E6F6D696E616C4350s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib41637A656Cs1
https://doi.org/10.1017/S096012951600027X
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib636F6D702D6C616D6264612D6D6F6E6164s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib53616272792D5761646C6572s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib4C696E646C6579s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib536B65774D6F6E6F6964616Cs1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib536B65775461726D6Fs1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib536B65775461726D6Fs1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib4D61634C616E65s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib52656C4D6F6Es1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib4E615454s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib636F636F3138s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib636F636F3138s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib43534965766964656E6365s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib41435048s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib484F52504F2D4A41434Ds1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib4E6F726D616C484F52504Fs1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib506F6C795468s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib506F6C795468s1
http://refhub.elsevier.com/S0167-6423(19)30118-2/bib706F6C7953796Es1

	Polymorphic computation systems: Theory and practice of conﬂuence with call-by-value
	1 Introduction
	1.1 How to formalise a concrete calculus
	1.2 A new framework of polymorphic computation rules with values and non-values distinction
	1.3 Differences from ordinary untyped rewriting systems
	1.3.1 Polymorphic typed rules and their conﬂuence
	1.3.2 Values and non-values

	1.4 Example 1: conﬂuence of the call-by-need λ-calculus
	1.5 Critical pair checking using the tool PolySOL
	1.6 Contributions
	1.7 Organisation

	2 Polymorphic computation rules
	2.1 Types
	2.2 Terms and meta-terms
	2.3 Notions of values and non-values
	2.4 Polymorphic second-order computation system

	3 Type inference for polymorphic computation rules
	3.1 Algorithm

	4 Conﬂuence of polymorphic computation systems in call-by-value
	4.1 Abstract rewriting
	4.2 Two conﬂuence properties
	4.3 Notion of uniﬁer between two polymorphic meta-terms in call-by-value
	4.4 Critical pairs of polymorphic computation systems with values/non-values
	4.5 Joinability of critical pairs

	5 Conﬂuence criteria without termination
	5.1 Conﬂuence by strong closedness
	5.2 Conﬂuence by orthogonality
	5.3 Modular conﬂuence checking

	6 Example 2: conﬂuence of the computational λ-calculus
	7 Example 3: coherence of skew-monoidal categories
	7.1 Laws
	7.2 Proof with PolySOL

	8 Implementation of PolySOL
	8.1 Syntax
	8.2 The command line interface
	8.3 Web interface

	9 Evaluation
	9.1 Results in Conﬂuence Competition 2018
	9.2 Benchmark
	9.3 On checking speed

	10 Summary and related work
	10.1 Summary
	10.2 Related work

	Acknowledgements
	References

