
Typed Term Evaluation Systems with Refinements for
Contextual Improvement

Koko Muroya

National Institute of Informatics, Japan

Makoto Hamana

Kyusyu Institute of Technology, Japan

Abstract

For a programming language, there are two kinds of term rewriting: run-time

rewriting (“evaluation”) and compile-time rewriting (“refinement”). Whereas

refinement resembles general term rewriting, evaluation is commonly constrained

by Felleisen’s evaluation contexts. While evaluation specifies a programming

language, refinement models optimisation and should be validated with respect

to evaluation. Such validation can be given by Sands’ notion of contextual im-

provement. We formulate evaluation in a term-rewriting-theoretic manner for

the first time, and introduce Term Evaluation and Refinement Systems (TERS).

We then identify sufficient conditions for contextual improvement, and provide

critical pair analysis for local coherence that is the key sufficient condition.

We demonstrate our methodology of proving contextual improvement through

examination of various calculi and functional programs, including a computa-

tional lambda-calculus, its extension with effect handlers, and the call-by-need

lambda-calculus.

Keywords: term rewriting, evaluation contexts, critical pair analysis

1. Introduction

Term rewriting is a general model of computation. The ecosystem of a func-

tional programming language utilizes two types of term rewriting: run-time

rewriting, which we shall refer to as evaluation, and compile-time rewriting,

referred to as refinement. Run-time evaluation specifies operational semantics

of the language. It can only happen in a particular order, usually deterministi-

cally. On the other hand, compile-time refinement models optimisation. It can

happen anywhere, nondeterministically. The difference between evaluation and

refinement, as kinds of term rewriting, can be summarized in terms of contexts:

(l → r) ∈ E E ∈ Ectx

E[lθ] →E E[rθ]

(l ⇒ r) ∈ R C ∈ Ctx

C[lθ] ⇒R C[rθ]

Evaluation→E uses a rewrite rule l → r inside a Felleisen’s evaluation context

[1, 2] E ∈ Ectx only; this is a new kind of restriction from the rewriting theoretic

point of view. In contrast, refinement ⇒R uses a rewrite rule l ⇒ r inside an

arbitrary context C ∈ Ctx ; this resembles general term rewriting.

We analyse the roles of term rewriting in programming languages in this

manner and divide them into evaluation and refinement for formalisation. This

constitutes a novel theory that is more suitable as a semantics of programming

Email addresses: kmuroya@nii.ac.jp (Koko Muroya), hamana@csn.kyutech.ac.jp
(Makoto Hamana)

Preprint submitted to Science of Computer Programming December 28, 2024

languages. Evaluation specifies (the behavior of) a programming language as

operational semantics. Evaluation is not merely a deterministic restriction of

refinement. Refinement which models optimisation should be validated with

respect to evaluation. Indeed, compiler optimisation is intended to preserve

evaluation results and improve time efficiency of evaluation. Such preservation

and improvement deserve formal validation.

Such validation can be provided as observational equivalence [3], and its

quantitative variant, contextual improvement [4]. Observational equivalence

t ∼= u asserts that two terms t and u cannot be distinguished by any context C;

formally, if C[t] terminates, C[u] terminates with the same evaluation result, and

vice versa. Contextual improvement additionally asserts that C[u] terminates

with no more evaluation steps than C[t]. This is a suitable notion to validate

refinement which models optimisation.

Whereas the theory of refinement, which resembles general term rewriting,

has been deeply developed, evaluation seems to be a new kind of restricted

rewriting and it lacks a general theory from the perspective of term rewriting.

This prevents useful ideas and techniques of term rewriting from transferring

from refinement to evaluation. In recent work [5] on a proof methodology of

observational equivalence, it is informally observed that a rewriting technique

can be useful for proving observational equivalence and contextual improvement.

This methodology informally employs critical pair analysis, a fundamental tech-

nique in rewriting theory. The idea is that t ∼= u holds if replacing t with u

(which means applying a refinement rule t ⇒ u) in any program does not conflict

with any evaluation rule l → r.

1.1. Overview

First we provide an overview of the new frameworks of Term Evaluation

Systems (TES) and Term Evaluation and Refinement Systems (TERS) we for-

mulate in this paper, using examples to illustrate their structure. We also

demonstrate our main result: a method for deriving contextual improvement

through local coherence.

The standard left-to-right call-by-value lambda-calculus is a TES. Terms t, t′

including values v are defined as below, and the call-by-value evaluation strategy

is specified using evaluation contexts E and one evaluation rule →:

v ::= λx.t, t, t′ ::= x | v | t t′, E ::= □ | E t | v E, (λx.t) v → t[v/x].

Values v appearing in this specification play a significant role. The definition

of evaluation contexts notably includes the clause v E where the left subterm

v is restricted to values. This ensures the left-to-right evaluation of application

t t′; the right subterm t′ can be evaluated only after the left subterm t has been

evaluated to a value. Additionally, the redex (λx.t) v restricts the right subterm

v to values. This ensures the call-by-value evaluation of application.

A simplified computational lambda-calculus λml∗ [6] is a TERS. Its terms

are either values v, v′ or computations p, p′, and its evaluation (which has been

studied [7]) is specified using evaluation contexts E and two evaluation rules →:

v, v′ ::= x | λx.p, p, p′ ::= return(v) | let x = p in p′ | v v′,

E ::= □ | let x = E in p, (λx.p) v → p[v/x], let x = return(v) in p → p[v/x].

We can observe that evaluation contexts constrain where evaluation rules can be

applied, namely in the subterm p of let x = p in p′. Again, values in evaluation

rules assure the call-by-value evaluation of application and let-binding.

2

E[lθ]

}}{{{
{ %%JJ

J

s

∗ ""

E[rθ]

∗yy
s′

E[lθ]
%%JJ

J
y� {{
{{{
{

s

""

E[rθ]

u}
s′

E[lθ]

$$JJ
J

x� zzz
zzzz
z

s
n ��

E[rθ]

k��
s′ u∗

ks (n ≤ 1 + k)

Figure 1: Joinability for confluence, commutation and local coherence

Originally, the calculus λml∗ is specified by equations rather than evaluation.

Directed equations can be seen as the following five refinement rules ⇒:

(λx.p) v ⇒ p[v/x], let x = return(v) in p ⇒ p[v/x],

λx.v x ⇒ v, let x = p in return(x) ⇒ p,

let x1 = (let x2 = p2 in p1) in p3 ⇒ let x2 = p2 in let x1 = p1 in p3.

While the first two rules represent β-conversion, the third one represents η-

conversion. The fourth one removes the trivial let-binding, and the last one

flattens let-bindings. We can observe that the last three rules simplify terms.

We now have a TERS of λml∗ which has both evaluation and refinement.

We are now interested in whether refinement is valid with respect to evaluation.

Our goal here is namely to prove contextual improvement: that is, for any

refinement t ⇒R u and any context C ∈ Ctx , if evaluation of C[t] terminates,

then evaluation of C[u] terminates with no more evaluation steps.

To prove contextual improvement, we would need to analyse how each eval-

uation step interferes with the refinement t ⇒R u. This amounts to analyse

how each evaluation rule l → r can conflict with each refinement rule l′ ⇒ r′.

This is what exactly critical pair analysis is targeted at.

Critical pair analysis is usually for proving confluence, which is a funda-

mental property of term rewriting. It firstly enumerates the situation where

two rewrite rules conflict with each other. It then checks if the two conflicting

rewritings can be joined. This is illustrated in Fig. 1 (left), where the join-

ing part is depicted in dashed arrows, and ‘∗’ means an arbitrary number of

rewriting.

In our development, we exploit critical pair analysis for proving contextual

improvement, and more specifically for proving local coherence. The analysis

is targeted at conflicts between evaluation → and refinement ⇒. We analyse if

these conflicts can be joined using evaluation and refinement; see Fig. 1 (right).

To ensure improvement, our notion of local coherence asserts that the joining

part satisfies the inequality 1 + k ≥ n about the number of evaluation steps.

To prove the joinability for local coherence, we need to be careful with

evaluation contexts. We need to show that the 1+ n evaluation steps E[lθ] →E

E[rθ]
k→E u can be simulated by the n evaluation steps s

n→E s′. Naively, this

can be done by showing that the evaluation rule l → r can also be applied to

the term s. This, however, involves making sure that the rule l → r can be

applied inside an evaluation context. This is not a trivial issue; the evaluation

context E might be modified by the refinement E[t] ⇒R s. This modification

should be “mild”, and more precisely, refinement should not turn an evaluation

context into a non-evaluation context (see Def. 2.15 ((ii))).

Note that local coherence can be seen as a generalisation of commutation [8];

see Fig. 1 (middle). Commutation is the case where k = 0, n = 1, and allowing

only one step of refinement ⇒R instead of
∗⇒R.

3

1.2. Contributions

This paper aims at formalising this connection between observational equiv-

alence proofs and critical pair analysis.

The key concepts of our development are evaluation contexts, values and

local coherence. Evaluation contexts are treated axiomatically. Values specify

successful results of evaluation; not all normal forms of evaluation are deemed

successful. Such distinction of values has been studied in second-order rewrit-

ing [9]. Finally, local coherence is a notion from the rewriting literature; it is

namely a sufficient condition for confluence in equational rewriting [10, 11]. We

exploit the notion for TERS instead of equational rewriting. Note that TERS

is not equational rewriting. Refinement is compile-time rewriting, and we do

not evaluate modulo refinement.

This paper is the fully reworked and extended version of the conference

paper [12]. The paper additionally includes new examples related to functional

programming, detailed proofs, and comparison with existing rewriting strategies

(Sec. 5).

More precisely, the contributions of this paper are summarized as follows.

1. We introduce a novel frameworks of term evaluation systems (TES), and its

combination with refinement, dubbed term evaluation and refinement sys-

tems (TERS), in both first-order and second-order settings.

2. We identify sufficient conditions for contextual improvement that include a

notion of local coherence.

3. We establish critical pair analysis for local coherence.

4. We demonstrate TERS with examples including a computational lambda-

calculus and its extension with effect handlers.

1.3. Organisation

We first develop the theory of the first-order TERS in §2. This serves as

the most direct system to illustrate our ideas and proof techniques for TERSs.

As it is a simple system that can be regarded as a variant of Term Rewriting

System (TRS) without higher-order functions, it should be accessible to many

readers, particularly those familiar with first-order TRS.

Next, we develop the theory of the second-order TERS in §3. This extends

the first-order TERS in two directions. The first is an extension to second-

order syntax, incorporating variable binding and substitution into the syntax.

The second is an extension to simple types, which was not done in the confer-

ence version [12]. As a result, the framework of TERS can faithfully represent

both fundamental calculi and the operational semantics of typed higher-order

functional programming languages.

The following two sections extend the conference version [12]. In §4 we

provide a new example: the call-by-need lambda-calculus. In §5 we compare

TE(R)S with known frameworks for specifying rewriting strategies. We namely

discuss the innermost strategy, and Lucas’ context-sensitive rewriting [13].

We conclude this paper with discussion on related work (§6) and future work

(§7).

2. First-order term evaluation and refinement systems

2.1. Preliminaries

Let N be the set of natural numbers. For any n ∈ N, let [n] denote the set

{1, . . . , n} (mind the starting point); for example, [0] = ∅, [1] = {1}, [2] = {1, 2}.

4

We write A for a sequence A1, . . . , An, and |A| for its length (i.e. n). The empty

sequence is denoted by ε.

Given a binary relation → on a set S, let
∗→ denote the reflexive and transi-

tive closure of →. For any k ∈ N, k→ denotes the k-fold composition of →. An

element x ∈ S is a normal form (with respect to →), if there exists no element

x′ ∈ S such that x → x′. Let NF(→) denote the set of normal forms with

respect to →.

2.2. Evaluation and refinement

Let Σ be a signature. Each element f ∈ Σ comes with an arity n ∈ N; we
write f : n. (First-order) terms are defined by the grammar t ::= x | f(t1, . . . , tn)
where x is a variable and f : n. Let TΣ be the set of terms. A term is closed

if it has no occurrence of variables. A term is linear if no variable occurs more

than once.

A position of a term is given by a (possibly empty) sequence of positive

numbers, in the usual manner. Concatenation of sequences p, q is denoted by

pq or p.q. Let Pos(t) be the set of all positions in a term t. We write s[t]p for

the term that is obtained by replacing the sub-term of s at the position p with

t. We write s|p for the sub-term of s at the position p.

A substitution θ is given by a sequence {x1 7→ t1, . . . , xk 7→ tk} where

x1, . . . , xk are distinct variables. We write subst θ when θ is a substitution.

Let tθ denote the term where all occurrences of x1, . . . , xk in t are replaced by

t1, . . . , tk, respectively. We call tθ an instance of t.

A context is a term that involves exactly one hole □. Let Ctx be the set of

contexts. Let C[t] denote the term where the hole □ of C ∈ Ctx is replaced by

t. A set C of contexts is closed under substitutions if C ∈ C implies Cθ ∈ C for

any subst θ, and closed under composition if C,C ′ ∈ C implies C[C ′] ∈ C. The

set C is inductive if any C ∈ C is □ or of the form f(t1, . . . , ti−1, C
′, ti+1, . . . , tn)

such that C ′ ∈ C and f(t1θ, . . . , ti−1θ,□, ti+1θ, . . . , tnθ) ∈ C for any subst θ.

Term evaluation systems (TES) can now be defined, as the standard term

rewriting with the new restriction imposed by means of evaluation contexts.

Definition 2.1 (TES) A term evaluation system is a tuple (Σ, E ,Ectx ,Val)
consisting of

• a signature Σ,

• a set E of evaluation rules, where (l → r) ∈ E with l, r ∈ TΣ such that

(i) l is not a variable, and

(ii) every free variable occurring in r also occurs in l,

• a set Ectx ⊆ Ctx of evaluation contexts that is closed under substitutions,

closed under composition and inductive, and

• a set Val ⊆ NF(→E) of values that satisfies (i) v ∈ Val implies vθ ∈ Val for

any subst θ, and (ii) it comes with an equivalence relation =Val ⊆ Val ×Val ,

where:

• the evaluation relation →E ⊆ TΣ × TΣ is defined as follows:

subst θ (l → r) ∈ E E ∈ Ectx

E[lθ] →E E[rθ]

Values specify which normal forms of →E are regarded as successful results.

For example, in a TES for arithmetics, a term x+y is a normal form but it is not

deemed a successful result. The equivalence relation =Val specifies observations

5

of these results in terms of equivalence classes. For example, when the syntactic

equality ≡ is used, each value v ∈ Val becomes a distinct observation. On the

other hand, when the total relation ⊤ is used, values are all identified; this

means that successful termination is the only possible observation.

The evaluation relation →E is closed under evaluation contexts in Ectx . It

is also closed under substitutions, thanks to Ectx being inductive.

Each TES can be equipped with refinement, which resembles general, unre-

stricted, term rewriting.

Definition 2.2 (TERS) A term evaluation and refinement system is a tuple

(Σ, E ,R,Ectx ,Val) consisting of

• a TES (Σ, E ,Ectx ,Val), and
• a set R of refinement rules where (l ⇒ r) ∈ R with l, r ∈ TΣ such that

(i) l is not a variable, and

(ii) every free variable occurring in r also occurs in l.

The refinement relation ⇒R ⊆ TΣ × TΣ is defined as follows:

subst θ (l ⇒ r) ∈ R C ∈ Ctx

C[lθ] ⇒R C[rθ]

We often simply write a TES (E ,Val) and a TERS (E ,R,Val). The re-

finement relation ⇒R is closed under substitutions, and closed under arbitrary

contexts in Ctx .

Example 2.3 (List append) We define a TERS Append as follows.

Signature Σ [] : 0, (:) : 2, (++): 2

Values Val V ::= [] | V : V

with =Val defined by

[] =Val []

V1 =Val V
′
1 V2 =Val V

′
2

V1 : V2 =Val V
′
1 : V ′

2

Evaluation contexts Ectx E ::= □ | E++ t | E : t | V : E

Evaluation rules E Refinement rules R
[] ++ ys → ys (xs++ ys)++ zs ⇒ xs++(ys++ zs)

(x : xs)++ ys → x : (xs++ ys) xs++[] ⇒ xs

This defines a well-known append function on strict lists with associativity as

a refinement rule. Equations that naturally hold for lists can be considered as

candidates for refinement rules.

2.3. Joinability and improvement

Evaluation is constrained by means of evaluation contexts, usually to have

the evaluation relation →E deterministic. Bridging the gap between evaluation

and refinement, we are interested in joinability up to R defined as follows. The

joinability is quantitative with an extra constraint on the number of evaluation

steps.

Definition 2.4 (Peaks, joinability)

• An E-peak is given by a triple (s1, t, s2) such that t →E s1 and t →E s2.

• An (R, E)-peak is given by a triple (s1, t, s2) such that t ⇒R s1 and t →E s2.

• An E-peak (s1, t, s2) is trivial if s1 ≡ s2 holds.

6

• An (R, E)-peak (s1, t, s2) is joinable up to R if there exist k, n ∈ N and u1, u2

such that s1
k→E u1, s2

n→E u2, 1 + k ≥ n and u2
∗⇒R u1.

Definition 2.5 (Rewriting properties)

• A set E of evaluation rules is deterministic if every E-peak is trivial.

• A TERS (E ,R,Val) is locally coherent if every (R, E)-peak is joinable up to

R.

We also simply say an (R, E)-peak is joinable, omitting “up to R.”

We formalize the key concept that relates evaluation with refinement in

TERS. It is called (contextual) improvement [4]: that is, any refinement

t ⇒R s cannot be distinguished by evaluation →E inside any contexts, and the

refinement cannot increase the number of evaluation steps that are needed for

termination. Observation is made according to the set Val of values and its

associated equivalence relation =Val .

Definition 2.6 (Value-invariance, improvement)

• A TERS (E ,R,Val) is value-invariant if, for any v ∈ Val and s ∈ TΣ,

v ⇒R s implies v =Val s ∈ Val .

• For a TERS (E ,R,Val), R is improvement w.r.t. E if, for any k ∈ N,
v ∈ Val , t ⇒R s and any C ∈ Ctx such that C[t], C[s] are closed terms,

C[t]
k→E v implies C[s]

m→E v′

for some m ∈ N and v′ ∈ Val such that v =Val v
′ and k ≥ m.

Directly proving improvement is challenging due to the universal quantifi-

cation over all contexts. Our first main theorem addresses this challenge by

providing a sufficient condition for improvement in TERSs, based on rewriting

theory.

Theorem 2.7 (Sufficient condition for improvement: first-order version)

Let (E ,R,Val) be a TERS. If E is deterministic, and (E ,R,Val) is value-

invariant and locally coherent, then the setR of refinement rules is improvement

w.r.t. the set E of evaluation rules.

Proof. Take arbitrary k ∈ N and t, u ∈ TΣ such that t ⇒R u and t
k→E v ∈

Val . We first prove that t ⇒R u and t
k→E v imply u

m→E v′, v =Val v′ and

k ≥ m, for any k ∈ N, by induction on k.

Base case.. When k = 0, we have t = v. Because the TERS (E ,R) is value-

invariant, we have u ∈ Val and v =Val u. We can take m = 0.

Inductive case.. When k > 0, there exists t′ ∈ TΣ such that t →E t′
k−1→ E v.

Because the TERS (E ,R) is locally coherent, the (R, E)-peak (u, t, t′) is joinable

up to R; namely there exist t′′, u′ ∈ TΣ and l,m, n ∈ N such that t′
l→E t′′,

u
n→E u′, t′′

m⇒R u′ and 1+ l ≥ n. Because the TERS (E ,R) is deterministic, t′′

must appear in the sequence t′
k−1→ E v, and hence t →E t′

l→E t′′
k−l−1→ E v. We

7

prove that we have the following situation:

t

��>
>>

>

|� ��
����
��

u
n ��

t′

l��
u′

n′ ��
t′′

k−l−1��
m

ks

v′ v
Val

namely that there exist n′ ∈ N and v′ ∈ Val such that u′ n′

→E v′ and v =Val v
′,

by induction on m ∈ N.

• Base case. When m = 0, t′′ = u′. We can take n′ = k − l − 1 and v′ = v.

Because 1 + l ≥ n, we have k ≥ n+ n′.

• Inductive case. When m > 0, we have t′′
m−1⇒ R u′′ ⇒R u′ for some u′′ ∈ TΣ.

By I.H. on m− 1, we have u′′ n′′

→E v′′ such that v′′ =Val v and k− l− 1 ≥ n′′.

Furthermore, by I.H. of the outer induction on n′′, we have u′ n′

→E v′ such

that v′′ =Val v
′ and n′′ ≥ n′. We finally have k ≥ n+ n′.

As a result, we have u
n+n′

→ E v′ such that v =Val v
′ and k ≥ n + n′. We can

take m = n+ n′.

Secondly, because ⇒R is closed under any contexts, t ⇒R u implies C[t] ⇒R

C[u] for any C ∈ Ctx . Therefore, t ⇒R u and C[t]
k→E v imply C[u]

m→E v′ such

that k ≥ m and v =Val v
′, for any v ∈ Val . □

This theorem requires proving determinism, value-invariance and local co-

herence. To establish determinism, a well-known syntactic condition called or-

thogonality [14, Sec.4] is particularly useful. A set of rules is orthogonal if there

is no overlap between any two rules and the left-hand side of every rule is linear.

Every orthogonal TERS is confluent. When E is orthogonal, proving determin-

ism reduces to showing that each term can be uniquely decomposed into an

evaluation context and a redex. In typical TERS, the equivalence relation =Val

on values can be decided by simply comparing head symbols, making it straight-

forward to verify value-invariance. Finally, we will show that local coherence

can be shown by critical pair analysis in Sec. 2.4.

Example 2.8 (Append, continued) The TERS Append’s set E of evalua-

tion rules in Example 2.3 is orthogonal. The evaluation contexts are defined to

uniquely decompose a context and a redex. Therefore, it is deterministic. It is

obviously value-invariant because any cons-list (i.e. term generated by (:) and

[]) cannot be rewritten by R.

The following examples show another interesting aspect of refinement rules.

8

Example 2.9 (Ones) Let Ones be the TERS defined as follows.

Signature Σ (:) : 2, nil, 1, ones : 0, ns : 1

Values Val V ::= 1 | V : t

with =Val defined by

1 =Val 1

V =Val V
′ t, t′ ∈ TΣ

V : t =Val V
′ : t′

Evaluation contexts Ectx E ::= □ | ns(E) | E : t

Evaluation rules E Refinement rule R
ones → 1 : ones ones ⇒ ns(1)

ns(n) → n : ns(n)

This defines lazy lists rather than the strict lists in Example 2.3. The refine-

ment ones ⇒ ns(1) appears to represent a denotational semantic equivalence

on infinite lists, i.e., the denotation of both sides is the infinite list of 1s [15].

We can take such rules as refinements and show that they indeed constitute

an improvement. This refinement rule and its intent are not an equivalence of

infinite lists, but rather a behavioral equivalence of ones and ns(1).

In this sense, the notion of improvement is broader than that of inductive

theorems [16], which is an equality on finite terms.

Example 2.10 (Divergence) Let Div be the TERS defined as follows.

Signature Σ Ω: 0, 0: 0

Values Val V ::= 0

with =Val defined by

0 =Val 0

Evaluation contexts Ectx E ::= □
Evaluation rule E Refinement rule R
Ω → Ω Ω ⇒ 0

The refinement rule induces contextual improvement. This means that diver-

gence (Ω) inside any context can be turned into a value.

2.4. Critical pair analysis for local coherence

2.4.1. Critical pairs

The definition of critical pairs is standard; it resembles the definition of

critical pairs for commutation [8]. Note that critical pairs are generated by two

kinds of overlaps, due to asymmetry of (R, E)-peaks.

Definition 2.11 (Unifiers)

• A unifier between t and u is a substitution θ such that tθ = uθ.

• A most general unifier between t and u is given by a unifier θ between t and

u such that, for any unifier σ between t and u, there exists a substitution σ′

such that σ = θσ′.

Definition 2.12 (Overlaps) Let X1,X2 ∈ {R, E}. Given rules (l1 _1 r1) ∈
X1, (l2 _2 r2) ∈ X2 and a substitution θ, a quadruple (l1 _1 r1, l2 _2 r2, p, θ)

is an (X1,X2)-overlap if it satisfies the following.

• The rules l1 _1 r1 and l2 _2 r2 do not have common variables.

• If p = ε, the rules l1 _1 r1 and l2 _2 r2 are not variants of each other.

9

• The sub-term l1|p is not a variable, where p is a position of l1.

• The substitution θ is a most general unifier between l1|p and l2.

Definition 2.13 (Critical pairs)

• The critical pair generated by an (R, E)-overlap (l1 ⇒ r1, l2 → r2, p, θ) is an

(R, E)-peak (r1θ, l1θ, (l1θ)[r2θ]p).

• The critical pair generated by an (E ,R)-overlap (l1 → r1, l2 ⇒ r2, p, θ) is an

(R, E)-peak ((l1θ)[r2θ]p, l1θ, r1θ).

Lemma 2.14 If a critical pair (t1, s, t2) is joinable, then for any substitution

θ, (t1θ, sθ, t2θ) is a joinable (R, E)-peak.

Proof. We have a joinable (R, E)-peak (t1, s, t2). Since refinement and evalu-

ation are closed under substitution, (t1θ, sθ, t2θ) is also a joinable (R, E)-peak.
□

2.4.2. Critical pair theorem

To obtain the so-called critical pair theorem, we need to impose extra con-

ditions on TERS that are summarized below.

Definition 2.15 (Well-behaved TERS) A TERS (Σ, E ,R,Ectx ,Val) is well-

behaved if it satisfies the following.

(i) For any C1, C2 ∈ Ctx , if C1[C2] ∈ Ectx then C1, C2 ∈ Ectx .

(ii) For any E ∈ Ectx and C ′ ∈ Ctx , if E ⇒R C ′ then C ′ ∈ Ectx .

(iii) For any (l →E r) ∈ E , l is linear.
(iv) For any (l ⇒R r) ∈ R,

(a) both l and r are linear, and

(b) for any x ∈ FV (l), if l{x 7→ □} ∈ Ectx then r{x 7→ □} ∈ Ectx .

The condition (i) is typically satisfied by inductively-defined evaluation con-

texts. The condition (ii) was already discussed in Sec. 1.1. The other conditions

are technical (see Remark 2.17 for some details), but these are straightforward

to verify.

Theorem 2.16 (Critical pair theorem) A well-behaved TERS is locally co-

herent if and only if every critical pair is joinable.

Proof. The “only if” part is straightforward. In the following, we prove the

“if” part.

Take an arbitrary (R, E)-peak (t1, s, t2). Our goal is to prove that this (R, E)-
peak is joinable. Since s ⇒R t1, there exist p ∈ Pos(s), (l ⇒ r) ∈ R and subst θ

such that s|p = lθ, t1 = s[rθ]p and s[□]p ∈ Ctx . We prove that the (R, E)-peak
(t1, s, t2) is joinable, by induction on the length of the position p.

Base case. When |p| = 0, i.e. p = ε, we have s = lθ and t1 = rθ. Because

lθ →E t2, there exist p′ ∈ Pos(lθ), (l′ → r′) ∈ E and subst θ′ such that

(lθ)|p′ = l′θ′, t2 = (lθ)[r′θ′]p′ and (lθ)[□]p′ ∈ Ectx . We have an (R, E)-peak
P = (rθ, lθ, (lθ)[r′θ′]p′).

• If p′ = ε, and l ⇒ r and l → r are variants of each other, we have rθ = r′θ′

and the (R, E)-peak P is joinable.

• Otherwise, there are two possibilities.

10

– If p′ is a non-variable position of l, we have (l|p′)θ = (lθ)|p′ = l′θ′. Since

FV (l) ∩ FV (l′) = ∅, we can take θ ∪ θ′ as a unifier between l|p′ and

l′. The (R, E)-peak P is an instance of the critical pair generated by an

(R, E)-overlap.

– Otherwise, there exist sequences q1, q2 and a variable y such that: q1 ∈
Pos(l), l|q1 = y, q2 ∈ Pos(yθ), and p′ = q1q2. Because of the condition ((i))

of Def. 2.15, (lθ)[□]p′ ∈ Ectx implies l[□]q1 , yθ[□]q2 ∈ Ectx . The variable

y must appear at most once in both l and r, due to the condition ((iii)a)

of Def. 2.15. If y does not appear in r, the (R, E)-peak P is joinable by

applying the rule l ⇒ r to t2. Otherwise, i.e. if y appears once in r, the rule

l′ → r′ can be applied to t1 thanks to the condition ((iii)b) of Def. 2.15,

and the rule l ⇒ r can be applied to t2. These two applications yield the

same result. Therefore, we can conclude that the (R, E)-peak P is joinable.

Inductive case. When |p| > 0, we have p = ipt for some positive number i and

some sequence pt. We have s = f(x1.u1, . . . , xi.ui, . . . , xk.uk), lθ = ui|pt . We

have an (R, E)-peak

P ′ = (f(x1.u1, . . . , xi.ui[rθ]pt , . . . , xk.uk), f(x1.u1, . . . , xi.ui, . . . , xl.ul), t2).

By s →E t2, there exist p′ ∈ Pos(s), (l′ → r′) ∈ E and subst θ′ such that

s|p′ = l′θ′, t2 = s[r′θ′]p′ and s[□]p′ ∈ Ectx . We proceed by case analysis on

p′ ∈ Pos(s).

• When p′ = ε , we have s = l′θ′ and t2 = r′θ′.

– If p is a non-variable position of l′, we have (l′|p)θ′ = (l′θ′)|p = lθ. Since

FV (l) ∩ FV (l′) = ∅, we can take θ ∪ θ′ as a unifier between l′|p and

l. The (R, E)-peak P ′ is an instance of the critical pair generated by an

(E ,R)-overlap.

– Otherwise, there exist sequences q1, q2 and a variable y such that: q1 ∈
Pos(l′), l′|q1 = y, q2 ∈ Pos(yθ′), and p = q1q2. The variable y appears at

most once in l′, due to the condition ((iv)) of Def. 2.15. We can apply the

rule l′ → r′ to t1. We can also apply the rule l ⇒ r to t2, as many times

as y appears in r′. These applications of l′ → r′ and l ⇒ r yield the same

result. The (R, E)-peak P ′ is therefore joinable.

• When p′ ̸= ε, i.e. p′ = i′p′t for some positive number i′ and some sequence p′t,

there are two possibilities.

– When i′ = i, by I.H., we have a joinable (R, E)-peak

Q = (ui[rθ]pt , ui, ui[r
′θ′]p′

t
).

Because f(. . . , xi.ui[□]pt , . . .) ∈ Ectx , we have f(. . . , xi.□, . . .) ∈ Ectx too,

thanks to the condition ((i)) of Def. 2.15. Therefore, joinability of the

(R, E)-peak Q implies joinability of the (R, E)-peak P ′.

– When i′ ̸= i, we can assume that i′ < i without loss of generality. The

(R, E)-peak

P ′ = (f(. . . , xi′ .ui′ , . . . , xi.ui[rθ]pt , . . .),

f(. . . , xi′ .ui′ , . . . , xi.ui, . . .),

f(. . . , xi′ .ui′ [r
′θ′]p′

t
, . . . , xi.ui, . . .))

is joinable (to f(. . . , xi′ .ui′ [r
′θ′]p′

t
, . . . , xi.ui[rθ]pt , . . .)), thanks to the con-

dition ((ii)) of Def. 2.15.

11

□

Remark 2.17 (On linearity conditions) For a TERS to be well-behaved,

its evaluation rules must be left-linear, and its refinement rules must be linear

(see Def. 2.15). Here we observe that relaxing these linearity conditions, with

a reasonable set of evaluation contexts and values, leads to non-joinable (R, E)-
peaks that are not instances of a critical pair. Let a TERS ES be defined as

follows.

Signature Σ +: 2, − : 2,
?≡ : 2, s : 1, 0: 0

Values Val V ::= 0 | s(V)

with =Val defined by

0 =Val 0

v =Val v
′

s(v) =Val s(v
′)

Evaluation contexts Ectx E ::= □ | s(E) | E + t | E − t | v − E

Evaluation rules E Refinement rule R
0 + x → x x− x ⇒ 0

s(x) + y → s(x+ y) 0 ⇒ x− x

0− x → 0

s(x)− s(y) → x− y

x
?≡ x → 0

Firstly, the non-left-linear refinement rule x− x ⇒ 0 induces the following non-

joinable (R, E)-peak.

(s(x) + y)− (s(x) + y)
,,YYYYYY

px jjjj
jjjjjjj
jjj

0 s(x+ y)− (s(x) + y)

In the term s(x + y) − (s(x) + y), the sub-term s(x) + y cannot be evaluated,

because s(x + y) is not a value. Secondly, the non-right-linear refinement rule

0 ⇒ x− x induces the following non-joinable (R, E)-peak.

0

w� xx
xxxxx
x

<<<
<
<<<

<

0− 0 // 0

This (R, E)-peak is not joinable with respect to our definition of joinability (see

Def. 2.4). The bottom term 0− 0 must not take more evaluation steps than the

top term 0. Finally, the non-left-linear evaluation rule x
?≡ x → 0 induces the

following non-joinable (R, E)-peak.

(s(x) + y)
?≡ (s(x) + y)

))RRR
RRR

RRRow gggggggggg

s(x+ y)
?≡ (s(x) + y) 0

In the term s(x+ y)
?≡ (s(x) + y), the sub-term s(x) + y cannot be evaluated,

because s(x+ y) is not a value.

12

2.4.3. Examples

Example 2.18 (Append, continued) The TERS Append in Example 2.3

has the following two joinable critical pairs.

([] ++YS) ++ZS

w� ww
ww
w

ww
ww
w

##G
GGG

GG

[] ++ (YS ++ZS)

$$HH
HHH

H YS ++ZS

vv
vv
vv

vv
vv
vv

YS ++ZS

((X’ : XS’) ++YS) ++ZS

t| ppp
pppppp
ppp

&&NN
NNN

NN

(X’:XS’) ++ (YS ++ZS)

��

(X’:(XS’++YS))++ZS

��
X’:(XS’ ++ (YS ++ZS))

NNN
NNN

N

NNN
NNN

N
X’:((XS’ ++YS) ++ZS)

s{ ppp
ppp

p
ppp

ppp
p

X’:(XS’ ++ (YS ++ZS))

Because the TERS is well-behaved, it is locally coherent. By Thm. 2.7,

we conclude that the refinement rule expressing the associativity of append is

improvement w.r.t. its evaluation.

Example 2.19 (Ones, continued) The TERS Ones in Example 2.9 has the

following joinable critical pair.

ones

rz mmmm
mmmmmm
mm

((QQ
QQQ

Q

ns(1)

''PP
PPP

1 : ones

s{ nnn
nnnnnn
nnn

1 : ns(1)

The TERS is well-behaved, and hence it is locally coherent. Because it is de-

terministic and value-invariant, by Thm. 2.7, the refinement rule ones ⇒ ns(1)

is improvement.

Example 2.20 (Divergence, continued) The TERS Div in Example 2.10

has the following joinable critical pair.

Ω

qy llll
lllllll
lll

))RRR
RRR

R

0
RRRR

RRRR

RRRR
RRRR

Ω

qy llll
lllllll
lll

0

The TERS is well-behaved, and hence it is locally coherent. Because it is de-

terministic and value-invariant, by Thm. 2.7, the refinement rule Ω ⇒ 0 is

improvement.

3. Simply-typed second-order term evaluation and refinement sys-
tems

Next we extend our framework to the second-order case. By second-order

we mean to use second-order abstract syntax [17, 18], i.e. syntax with vari-

able binding and metavariables. It allows us to formally deal with higher-order

term languages as in second-order algebraic theories [19] and second-order com-

putation systems [20, 9]. The framework also involves simple-types with type

constructors.

3.1. Types

We assume that A is a set of atomic types (e.g. Bool, Nat, etc.). We also

assume a set of type constructors together with arities n ∈ N, n ≥ 1. A type

13

signature is a set of atomic types and type constructors. The sets of molecular

types (mol types, for short) T0 and types T are generated by the following rules:

b ∈ A
b ∈ T0

b1, . . . , bn ∈ T0
T n-ary type constructor

T (b1, . . . , bn) ∈ T0
a1, . . . , an, b ∈ T0
a1, . . . , an → b ∈ T

Remark 3.1 Molecular types work as “base types” in ordinary type theories.

But in our usage, we need “base types” which are constructed from “more basic”

types. Hence we first assume atomic types as the most atomic ones, and then

generate molecular types from them. Molecular types exactly correspond to

base types in [21, 22].

Example 3.2 Assume atomic types Bool and Nat, and a unary type construc-

tor List. Then the set T0 of all mol types is the least set satisfying

T0 = {Bool,Nat} ∪ {List(a) | a ∈ T0}

Namely, given a mol type a, we have a mol type List(a).

3.2. Meta-terms

A signature Σ is a set of function symbols of the form

f : (a1 → b1), . . . , (am → bm) → c

where all ai, bi, c are mol types (thus any function symbol is of up to second-

order type).

Example 3.3 The simply-typed λ-terms on the set Ty of simple types gen-

erated by a set BTy of base types are modeled in our setting as follows. Let

A = BTy. We suppose a type constructor Arr to encode arrow types. The set

of Typ of all simple types for the λ-calculus is the least set satisfying

Ty = BTy ∪ {Arr(a, b) | a, b ∈ Ty}.

The λ-terms are given by a signature

Σstl =

{
lama,b : (a → b) → Arr(a, b)

appa,b : Arr(a, b), a → b
| a, b ∈ Ty

}
The β-reduction law is presented as

(beta) M : a → b, N : a ▷ ⊢ appa,b(lama,b(x
a.M [x]), N) ⇒ M [N] : b

We use the following notational convention throughout the paper. We will

present a signature by omitting mol type subscripts a, b (see also more detailed

account [9]). For example, simply writing function symbols lam and app, we

mean lama,b and appa,b in Σstl having appropriate mol type subscripts a, b.

A metavariable is a variable declared as M : a → b (written as capital

letters M,N,K, . . .). A variable of a molecular type is merely called variable

(written usually x, y, . . ., or sometimes written xb when it is of type b). The raw

syntax is given as follows.

- Terms have the form t ::= x | x.t | f(t1, . . . , tn).
- Meta-terms extend terms to t ::= x | x.t | f(t1, . . . , tn) | M [t1, . . . , tn].

The last form is called a meta-application, meaning that when we instantiate

M : a → b with a term s, free variables of s (which are of types a) are replaced

14

y : b ∈ Γ

Θ ▷ Γ ⊢ y : b

(M : a1, . . . , am → b) ∈ Θ

Θ ▷ Γ ⊢ ti : ai (1 ≤ i ≤ m)

Θ ▷ Γ ⊢ M [t1, . . . , tm] : b

f : (a1 → b1), · · · , (am → bm) → c ∈ Σ

Θ ▷ Γ, xi : ai ⊢ ti : bi (1 ≤ i ≤ m)

Θ ▷ Γ ⊢ f(xa1
1 .t1, . . . x

am
m .tm) : c

Figure 2: Typing rules of meta-terms

with (meta-)terms t1, . . . , tn. We may write x1, . . . , xn. t for x1. · · · .xn. t, and

we assume ordinary α-equivalence for bound variables.

For a meta-term t, the set of its free variables is denoted by FV (t), the set

of its bound variables is denoted by BV (t), and the set of its free metavariables

is denoted by FM (t).

A metavariable context Θ is a sequence of (metavariable:type)-pairs, and a

context Γ is a sequence of (variable:mol type)-pairs. A judgement is of the form

Θ ▷ Γ ⊢ t : b.

A meta-term t is well-typed by the typing rules Fig. 2. Note that a raw meta-

term of the form x.t does not have a type. But we will use raw terms x.t in

various places, such as in substitution below.

Let X be the countably infinite set of variables. A sequence of types may be

empty in the above definition. The empty sequence is denoted by (), which may

be omitted, e.g., b1, . . . , bm → c , or () → c. The latter case is simply denoted

by c.

3.3. Contextual sets of meta-terms

In the proofs of this paper, we will use the structure of type and context-

indexed sets. A contextual set A is a family {Ab(Γ) | b ∈ T, context Γ} of

sets indexed by types and variable contexts. Set operations such as ∪,⊎,∩
are extended to contextual sets by index-wise constructions, such as A ∪ B by

{Ab(Γ) ∪ Bb(Γ) | b ∈ T, context Γ}. Throughout this paper, for a contextual

set A, we simply write a ∈ A if there exist b,Γ such that a ∈ Ab(Γ). The indices

are usually easily inferred from context. A map f : A → B between contextual

sets is given by indexed functions {fb(Γ) : Ab(Γ) → Bb(Γ) | b ∈ T, context Γ}.
Examples of contextual sets are the contextual set of meta-terms MΣ and of

terms TΣ defined by

(MΣ)b(Γ) ≜ {t | Z ▷ Γ ⊢ t : b}, (TΣ)b(Γ) ≜ {t | ▷ Γ ⊢ t : b}.

for a given signature Σ.

A term is closed if it has no occurrence of variables.

A position of a meta-term is given by a (possibly empty) sequence of positive

numbers. The set Pos(t) of all positions in a meta-term t is inductively defined

as follows.

Pos(x) = {ε}
Pos(x.t) = {ε} ∪ {1.p | p ∈ Pos(t)}

Pos(f(t1, . . . , tl)) = {ε} ∪ {i.p | i ∈ [l], p ∈ Pos(ti)}
Pos(M [t1, . . . , tm]) = {ε} ∪ {i.p | i ∈ [m], p ∈ Pos(ti)}

15

We write s[t]p for the meta-term that is obtained by replacing the sub-term of

s at the position p with t. We write s|p for the sub-term of s at the position p.

We say that a position p in a meta-term t is a metavariable position if t|p is

a meta-application, i.e., t|p = M [t1, . . . , tn]. This description includes the case

t|p = M where n = 0, for which we identify M [] with just a metavariable M .

A substitution θ is given by a sequence [M1 7→ x1.s1, . . . ,Mk 7→ xk.sk]

such that: (i) M1, . . . ,Mk are distinct metavariables, and (ii) for some Θ,Γ

and for each i ∈ [k], (Mi : |xi|) ∈ Z and Θ ▷ Γ, xi ⊢ si hold. We call

M1, . . . ,Mk the domain of θ and write Dom(θ). We call Θ ▷ Γ a support

of θ, and write substΘ▷Γ θ when θ is a substitution with a support Θ ▷ Γ.

We sometimes simply write subst θ, omitting the support. Given a meta-term

Θ,M1 : |x1|, . . . ,Mk : |xk| ▷ Γ ⊢ t, a meta-term tθ is defined by

xθ = x (f(x1.t1, . . . , xl.tl))θ = f(x1.t1θ, . . . , xl.tlθ)

(M [t1, . . . , tm])θ =

{
si{(xi)1 7→ t1θ, . . . , (xi)m 7→ tmθ} (∃i ∈ [k]. M ≡ Mi)

M [t1θ, . . . , tmθ] (otherwise)

The meta-term si{(xi)1 7→ t1θ, . . . , (xi)m 7→ tmθ} is the result of standard

(capture-avoiding) substitution for variables. We call tθ an instance of t.

Given two substitutions θ1 = [M 7→ x.s,K 7→ z.t] and θ2 = [N 7→ y.u,K 7→ z.t]

such that the concatenation M,N,K is a sequence of distinct metavariables,

their composition θ1θ2 is defined by θ1θ2 = [M 7→ x.sθ2,K 7→ z.tθ2, N 7→ y.u].

It satisfies (tθ1)θ2 = t(θ1θ2).

A renaming is given by a sequence ρ = [M 7→ N] such that ρ is injective,

and M ∩N = ∅.

A meta-term is a higher-order pattern (pattern in short) if each occurrence

of meta-application must be of the form M [x1, . . . , xm], where x1, . . . , xm are

distinct bound variables.

Definition 3.4 (Contexts) Suppose that for each type σ, there exists a con-

stant □σ of type σ called a hole. A (typed) context C is a well-typed meta-term

that involves exactly one hole. We denote by C : σ → τ when the meta-term C

of type τ involves the hole □σ of type σ.

Let C[t] denote the term where the hole □σ of a context C is replaced by a

meta-term t of type σ. Note that, unlike substitution, the operation of filling in

the context hole may cause the capture of bound variables.

Hereafter, we omit the superscript σ in a hole when it is clear from context.

A context is flat if any prefix of the position of the hole is not a metavariable

position; e.g. f(x.□) is a flat context, but M [□] and M [f(x.□)] are not flat

contexts. Let Ctx be the set of all contexts.

A set C of contexts is closed under substitutions if C ∈ C implies Cθ ∈ C for

any subst θ, and closed under composition if C,C ′ ∈ C implies C[C ′] ∈ C. The

set C is inductive if any C ∈ C is □ or of the form f(t1, . . . , ti−1, C
′, ti+1, . . . , tn)

such that C ′ ∈ C and f(t1θ, . . . , ti−1θ,□, ti+1θ, . . . , tnθ) ∈ C for any subst θ.

3.4. Syntax classes

We introduce a notion of syntactic classification for terms, typically used

for distinguishing values and non-values, following [9]. In loc. cit., the call-by-

value lambda-calculus (dubbed λvalue-calculus) involves the following two syntax

classes of values and non-values.

Values V ::= x | λx.M Non-values P ::= M N

16

This also specifies two special names V, P of metavariables that are used for

values and non-values.

Definition 3.5 (Syntax class) We define a set Sclass of names for syntax

classes. Each syntax class is associated with an inductively defined set of

well-typed meta-terms specified by a BNF grammar or inference rules (cf. Ex-

ample 4.1). Every metavariable is either associated with a syntax class and

called “⟨syntax class name⟩ metavariable”, or not associated and called general

metavariable. We assume the following two default syntax classes:

• values associated with well-typed values, and

• general associated with the set of all well-typed meta-terms.

Therefore, any well-typed meta-term belongs to at least the general syntax class.

For example, in the case of λvalue-calculus, we define

Sclass = { values V ::= x | λx.M, non-values P ::= M N }.

The metavariable V is a value metavariable, P is a non-value metavariable, and

M,N are general metavariables. Substitutions must also be consistent with

syntax classes.

Definition 3.6 A substitution θ is valid if for each assignment (M 7→ x.t) ∈ θ,

the following holds:

• let S be the associated meta-term set of M ’s syntax class, and

• T the associated meta-term set of t’s syntax class, and

• S ⊇ T holds.

We write valid θ when θ is a valid substitution.

For example, for given a general metavariable M and a value metavariable

V , a substitution θ : M 7→ V is valid, whereas θ : V 7→ M is not valid because

the set of all values are included in the set of all meta-terms.

Composition of valid substitutions is again valid, under the assumption that

each syntax class is closed under substitution: that is, for each syntax class, if

a meta-term t is included then tθ is also included, where θ is a substitution.

3.5. Evaluation and refinement

Definition 3.7 For meta-terms Θ ▷ ⊢ ℓ : τ and Θ ▷ ⊢ r : τ , an evaluation

(resp. a refinement) rule is of the form

Θ ▷ ⊢ ℓ → r : τ

satisfying:

1. ℓ is not a variable nor a metavariable.

2. ℓ is a higher-order pattern.

3. All metavariables in r appear in ℓ.

We usually omit the context and type and simply write ℓ → r for an evaluation

(resp. ℓ ⇒ r for a refinement) rule.

We assume that the lhs of every rule is a Miller’s higher-order pattern [23] to

make unification decidable, which is important for computing rewrite steps and

critical pairs. Second-order TES and TERS can now be defined, in an analogous

way to the first-order setting.

17

(RuleSub)

Θ ▷ Γ, xi : τ i ⊢ si : σi (1 ≤ i ≤ k) valid [M 7→ x.s]

(M1 : (τ1 → σ1), . . . ,Mk : (τk → σk) ▷ ⊢ ℓ → r : τ) ∈ E
Θ ▷ Γ ⊢ ℓ [M 7→ x.s] →E r [M 7→ x.s] : τ

(Ectx)
E : σ → τ ∈ Ectx Θ ▷ Γ ⊢ t →E t′ : σ

Θ ▷ Γ ⊢ E[t] →E E[t′] : τ

Figure 3: Typed second-order evaluation →E on meta-terms

(RuleSub)

Θ ▷ Γ, xi : τ i ⊢ si : σi (1 ≤ i ≤ k) valid [M 7→ x.s]

(M1 : (τ1 → σ1), . . . ,Mk : (τk → σk) ▷ ⊢ ℓ ⇒ r : τ) ∈ R
Θ ▷ Γ ⊢ ℓ [M 7→ x.s] ⇒R r [M 7→ x.s] : τ

(Ctx)
C : σ → τ ∈ Ctx Θ ▷ Γ ⊢ t ⇒R t′ : σ

Θ ▷ Γ ⊢ C[t] ⇒R C[t′] : τ

Figure 4: Typed second-order refinement ⇒R on meta-terms

Definition 3.8 (Second-order TES) A second-order term evaluation system

is a tuple (Type,Σ, E ,Ectx ,Sclass) consisting of

• a type signature Type,

• a signature Σ,

• a set E of evaluation rules,

• a set Ectx ⊆ Ctx of flat contexts, called evaluation contexts, that is closed

under substitutions, closed under composition and inductive, and

• a set Sclass of syntax classes that satisfies

1. it includes a value class associated with the set Val

2. Val ⊆ NF(→E)

3. v ∈ Val implies vθ ∈ Val for any valid θ

4. it comes with an equivalence relation =Val ⊆ Val ×Val .

The evaluation relation →E ⊆ MΣ ×MΣ is defined in Fig. 3.

The evaluation relation →E is closed under evaluation contexts in Ectx . It is

closed under substitutions, thanks to Ectx being an inductive set of flat contexts.

Definition 3.9 (Second-order TERS) A second-order term evaluation and

refinement system is a tuple (Type,Σ, E ,R,Ectx ,Sclass) consisting of

• a second-order TES (Type,Σ, E ,Ectx ,Sclass), and
• a set R of refinement rules that satisfies the following.

• For any (l ⇒R r) ∈ R and valid θ, if lθ belongs to a syntax class S then rθ

belongs to S.

• For any (l →E r) ∈ R and valid θ, if lθ belongs to a syntax class S then rθ

belongs to S.

• The refinement relation ⇒R on well-typed meta-terms is defined in Fig.4.

The refinement relation ⇒R is closed under arbitrary contexts in Ctx and

valid substitutions.

3.6. Joinability and improvement

The definitions of peaks, joinability (see Def. 2.4), rewriting properties (Def. 2.5),

and improvement (Def. 2.6) are inherited from the first-order case. Finally, the

18

first main theorem (Thm. 2.7) also holds in the second-order setting:

Theorem 3.10 (Sufficient condition for improvement: second-order version)

If a second-order TERS (Σ, E ,R,Ectx ,Sclass) is deterministic, value-invariant

and locally coherent, then R is improvement w.r.t. E .

3.7. Examples

In the remainder of this section, we present a few examples of TERS. We

may omit type scripts for simplicity.

Example 3.11 (The untyped call-by-value lambda-calculus [24]) With types,

we can represent an untyped calculus as a TERS. A TERS CBVλ of Plotkin’s

untyped (left-to-right) call-by-value lambda-calculus is defined as follows.

Type signature ι

Signature Σ

λ : (ι → ι) → ι, @: ι, ι → ι

Syntax class Sclass

values V ::= x | λ(x.M)

with =Val defined by
v ∈ Val

x =Val v λ(x.t) =Val λ(y.t′)

Evaluation contexts Ectx E ::= □ | E@M | V@E

Evaluation rule E
λ(x.M [x])@V → M [V]

Refinement rules R
λ(x.M [x])@V ⇒ M [V]

λ(x.V@x) ⇒ V

We note that evaluation proceeds from left to right in the TERS CBVλ. For

example, we have:

(λ(x.x)@λ(y.y))@(λ(z.z)@λ(w.w)) →E λ(y.y)@(λ(z.z)@λ(w.w))

→E λ(y.y)@λ(w.w)

→E λ(w.w),

(λ(x.x)@λ(y.y))@(λ(z.z)@λ(w.w)) ̸→E (λ(x.x)@λ(y.y))@λ(w.w).

The last evaluation is impossible, because (λ(x.x)@λ(y.y))@□ is not a valid

evaluation context. We also emphasize that the TERS CBVλ is different from

the lambda-calculus with the (leftmost) innermost strategy. Namely, no evalu-

ation can happen inside abstraction; λ(x.□) is not a valid evaluation context,

and therefore λ(x.λ(y.y)@λ(z.z)) ̸→E λ(x.λ(z.z)).

Example 3.12 (A simplified computational lambda-calculus λml∗ [6, 7])

A notion of evaluation for Sabry and Wadler’s computational lambda-calculus

λml∗ [6] has been studied [7]. A TERSCompλml∗ of the computational lambda-

19

calculus is defined as follows:

Type signature ι, Arr(−,−), T(−)

Signature Σ

λa,b : (a → T(b)) → Arr(a, b), (@a,b) : Arr(a, b), a → T(b),

leta,b : T(a), (a → T(b)) → T(b), returna : a → T(a)

Syntax classes Sclass

values V, V ′ ::= x | λ(x.P)

with =Val defined by
v ∈ Val

x =Val v λ(x.t) =Val λ(y.t′)

computations P, P ′ ::= return(V) | let(P, x.P ′) | V@V ′

Evaluation contexts Ectx E ::= □ | let(E, x.P)

Evaluation rules E
λ(x.P [x])@V → P [V] (1)

let(return(V), x.P [x]) → P [V] (2)

Refinement rules R
λ(x.P [x])@V ⇒ P [V] (r1)

let(return(V), x.P [x]) ⇒ P [V] (r2)

λ(x.V@x) ⇒ V (r3)

let(P, x.return(x)) ⇒ P (r4)

let(let(P1, x1.P2[x1]), x2.P3[x2]) ⇒ let(P1, x1.let(P2[x1], x2.P3[x2])) (r5)

Example 3.13 (Effect handlers [25]) A TERS Hndl is defined in Fig. 3.7,

where V, V1, V2 are value metavariables,H is a handler metavariable, and P, P1, P2, . . .

are computation metavariables.

We only consider two operations op1, op2 and two handlers: handler1 for

catching the first operation op1 and handler0 for catching no operation, for

simplicity. We change the evaluation rule (7) to be the so-called shallow han-

dling ; the original, deep handling, rule [25] can be accommodated to a TERS,

but this TERS would not be well-behaved1.

We also select the refinement rules that do not correspond to an evaluation

rule and those whose lhs is a Miller’s higher-order pattern2. The refinement

rules are numbered according to the original presentation [25, Fig. 7].

3.8. Second-order critical pair analysis for local coherence

3.8.1. Critical pairs

The following definitions are analogous to those of first-order TERS. The

definition of critical pairs is again standard (cf. [26]), akin to commutation.

Definition 3.14 (Lifter) Given a sequence x of variables and a sequence K

of meta-variables, an xa-lifter of a pattern t away K is given by a substitution

σ = [M 7→ y.(Mρ)[y, x]] where M = FM (t) and ρ = [M 7→ N] is a renaming

such that (i) N ∩K = ∅, and (ii) if Mi : ai → bi then Ni : ai, a → bi.

1More specifically, the metavariable P1 would appear twice in the rhs of the original rule
of the evaluation rule (7).

2The refinement rule (7) in [25, Fig. 7] is the only refinement rule whose lhs is not a Miller’s
higher-order pattern.

20

Type signature Bool, Arr(−,−), Hndl(−,−), T(−)

Signature Σ

true, false : Bool, funa,b : (a → T(b)) → Arr(a, b), (@a,b) : Arr(a, b), a → T(b),

returna : a → T(a), op1a,b,c
: a, (b → T(c)) → T(c), op0a,b,c

: a, (b → T(c)) → T(c),

handler1a,b,c
: (a → T(b)), (a′, (b′ → T(c′)) → T(c′)) → Hndl(T(a),T(b)),

handler0a,b
: (a → T(b)) → Hndl(T(a),T(b)), doa,b : T(a), (a → T(b)) → T(b),

ifa : Bool,T(a),T(a) → T(a), with handlea,b : Hndl(T(a),T(b)),T(a) → T(b)

Syntax classes Sclass

functions F ::= x | fun(x.P)

values V ::= true | false | F | H

with =Val defined by
b ∈ {true, false}

b =Val b

v ∈ Val

x =Val v fun(x.t) =Val fun(y.t′)

handler1(x.p, x.k.p1) =Val handler1(x.p′, x.k.p′1)

handler0(x.p) =Val handler0(x.p′)

handlers H ::= handler1(x.P, x.k.P1) | handler0(x.P)

computations P, P1, P2 ::= return(V) | op(V, y.P) | do(P1, x.P2)

| if(V, P1, P2) | F V | with handle(H,P)

Evaluation contexts Ectx E ::= □ | do(E, x.P) | with handle(H,E)

Evaluation rules E where i ∈ [2]

do(return(V), x.P [x]) → P [V] (1)

do(opi(V, y.P1[y]), x.P2[x]) → opi(V, y.do(P1[y], x.P2[x])) (2)

if(true, P1, P2) → P1 (3)

if(false, P1, P2) → P2 (4)

fun(x.P [x])@V → P [V] (5)

In the following three rules, h1 ≡ handler1(x.P [x], x.k.P1[x, k]).

with handle(h1, return(V)) → P [V] (6)

with handle(h1, op1(V, y.P
′[y])) → P1[V, fun(y.P

′[y])] (7)

with handle(h1, op2(V, y.P
′[y])) → op2(V, y.with handle(h1, P

′[y])) (8)

In the following two rules, h0 ≡ handler0(x.P [x]).

with handle(h0, return(V)) → P [V] (9)

with handle(h0, opi(V, y.P
′[y])) → opi(V, y.with handle(h0, P

′[y])) (10)

Refinement rules R
do(P, x.return(x)) ⇒ P (r3)

do(do(P1, x1.P2[x1]), x2.P3[x2]) ⇒ do(P1, x1.do(P2[x1], x2.P3[x2])) (r4)

fun(x.F@x) ⇒ F (r9)

with handle(handler0(x.P [x]), P ′) ⇒ do(P ′, x.P [x]) (r13)

Figure 5: The TERS Hndl

21

Definition 3.15 (Unifiers)

• Given two meta-terms t, u such that FV (t) = FV (u), a unifier between t and

u is a valid substitution θ such that tθ = uθ.

• A most general unifier between t and u is given by a unifier θ between t and u

such that, for any unifier σ between t and u, there exists a valid substitution

σ′ such that σ = θσ′.

Definition 3.16 (Overlaps) Let X1,X2 ∈ {R, E}. Given rules (l1 _1 r1) ∈
X1, (l2 _2 r2) ∈ X2 and a substitution θ, a tuple (l1 _1 r1, l2 _2 r2, p, σ, θ) is

an (X1,X2)-overlap if it satisfies the following.

• The rules l1 _1 r1 and l2 _2 r2 do not have common variables or metavari-

ables.

• If p = ε, the rules l1 _1 r1 and l2 _2 r2 are not variants of each other.

• The sub-term l1|p is not a meta-application, where p is a position of l1.

• For x = FV (l1|p) ∩ BV (l1), σ is an x-lifter of l2 away FM (l1).

• The substitution θ is a most general unifier between l1|p and l2σ.

Definition 3.17 (Critical pairs)

• The critical pair generated by an (R, E)-overlap (l1 ⇒ r1, l2 → r2, p, σ, θ) is

an (R, E)-peak (r1θ, l1θ, (l1θ)[(r2σ)θ]p).

• The critical pair generated by an (E ,R)-overlap (l1 → r1, l2 ⇒ r2, p, σ, θ) is

an (R, E)-peak ((l1θ)[(r2σ)θ]p, l1θ, r1θ).

Remark 3.18 Compared to the first-order setting, the definition of critical

pairs need to use lifters defined in Definition 3.14 in the higher-order setting.

The following second-order TERS illustrates the necessity of lifters, which has

not been clearly explained in prior work, such as [26]. The TERS is a variant

of the call-by-name lambda-calculus, with its refinement rule being “incorrect”

eta-rule.

Type signature ι

Signature Σ

λ : (ι → ι) → ι, @: ι, ι → ι, 0: ι

Syntax class Sclass

values V ::= x

with =Val defined by
x =Val y

Evaluation contexts Ectx E ::= □ | E@M | λ(x.E)

Evaluation rule E
λ(y.M [y])@N → M [N]

Refinement rule R
λ(x.M ′[x]@x) ⇒ M ′[0]

Analogous to the first-order setting, one would consider an overlap between the

evaluation rule → and the refinement rule ⇒. This would amount to take a

most general unifier between the lhs λ(y.M [y])@N of the evaluation rule and a

subterm M ′[x]@x of the lhs of the refinement rule. One natural candidate of

the most general unifier is:

θ = [M 7→ y.K[y], N 7→ x,M ′ 7→ x.λ(y.K[y])].

22

However, this is not most general; it cannot have both of the two unifiers below

as instances:

θ1 = [M 7→ y.y,N 7→ x,M ′ 7→ x′.λ(y.y)],

θ2 = [M 7→ y.x,N 7→ x,M ′ 7→ x′.λ(y.x′)].

To deal with this apparent lack of most general unifiers, we restrict the definition

of unifiers so that we take unifiers of two terms t and u only when FV (t) =

FV (u). In the above example, this amounts to taking a unifier between terms

λ(y.M [y, x])@N [x] and M ′[x]@x instead of terms λ(y.M [y])@N and M ′[x]@x.

Namely, we derive the term λ(y.M [y, x])@N [x] from the term λ(y.M [y])@N so

that it has x as a free variable. Lifters are introduced for this derivation purpose;

the term λ(y.M [y, x])@N [x] is precisely an x-lifter of the term λ(y.M [y])@N .

Lemma 3.19 Let l1, l2 be two patterns with no common metavariables, p be

a position of l1 such that the sub-term l1|p is not a meta-application, x =

FV (l1|p) ∩ BV (l1), and σ be an x-lifter of l2 away FM (l1). The following are

equivalent.

1. ∃θ. (l1|p)θ = (l2σ)θ

2. ∃θ1, θ2. (l1|p)θ1 = (l2)θ2

Moreover, θ|FM (l1) = θ1 and (σθ)|FM (l2) = θ2 hold.

Proof. (1) =⇒ (2). We can take θ1 to be the restriction of θ to FM (l1),

i.e. θ1 = θ|FM(l1). We can take θ2 to be the composition of σ and θ, namely

θ2 = σθ.

(2) =⇒ (1). Without loss of generality, we assume thatDom(θ1) ⊆ FM (l1).

Let ρ be the renaming associated with the lifter σ, and θ′2 be a substitution

[(Mρ) 7→ y, x. θ2(M [x])]. We take θ = θ1 ∪ θ′2. □

Lemma 3.20 If a critical pair (t1, s, t2) is joinable, then for any valid substi-

tution θ, (t1θ, sθ, t2θ) is a joinable (R, E)-peak.

Proof. We have a joinable (R, E)-peak (t1, s, t2). Because evaluation is closed

under valid substitutions, and refinement satisfies t ⇒R u =⇒ tθ
∗⇒R uθ,

(t1θ, sθ, t2θ) is also a joinable (R, E)-peak. □

To obtain the so-called critical pair theorem, TERS need to be well-behaved

again. The following conditions are similar to the first-order case (see Def. 2.15),

except for the last two conditions which ensure that evaluation and refinement

are consistent with syntax classes.

We say that a meta-term t is linear w.r.t. non-value metavariables if every

metavariable that is not a value metavariable occurs at most once in t. Note

that the linear restriction does not apply to value metavariables, allowing a

value metavariable to occur more than twice in t.

Definition 3.21 (Well-behaved TERS) A TERS (Σ, E ,R,Ectx ,Sclass) is

well-behaved if it satisfies the following.

(i) For any C1, C2 ∈ Ctx , if C1[C2] ∈ Ectx then C1, C2 ∈ Ectx .

(ii) For any E ∈ Ectx and C ′ ∈ Ctx , if E ⇒R C ′ then C ′ ∈ Ectx .

(iii) For any (l ⇒R r) ∈ R,

(a) both l and r are linear w.r.t. non-value metavariables, and

(b) for every non-value metavariable M : σ → τ ∈ FM (l),

if l[M 7→ x.□] ∈ Ectx then r[M 7→ x.□] ∈ Ectx .

23

(iv) For any (l →E r) ∈ E , l is linear w.r.t. non-value metavariables.

Thanks to the linearity condition of non-value metavariables, we can have the

distributive law of the map function on lists over list append as a well-behaved

refinement rule: i.e. map(V,M)++ map(V,N) ⇒ map(V,M ++N) where the first

function argument of map is restricted to values.

Theorem 3.22 (Critical pair theorem) A well-behaved TERS is locally co-

herent if and only if every critical pair is joinable.

Proof. The “only if” part is straightforward. In the following, we prove the

“if” part.

Take an arbitrary (R, E)-peak (t1, s, t2). Our goal is to prove that this (R, E)-
peak is joinable. Since s ⇒R t1, there exist p ∈ Pos(s), (l ⇒ r) ∈ R and valid θ

such that s|p = lθ, t1 = s[rθ]p and s[□]p ∈ Ctx . We prove that the (R, E)-peak
(t1, s, t2) is joinable, by induction on the length of the position p.

Base case. When |p| = 0, i.e. p = ε, we have s = lθ and t1 = rθ. Be-

cause lθ →E t2, there exist p′ ∈ Pos(lθ), (l′ → r′) ∈ E and valid θ′ such that

(lθ)|p′ = l′θ′, t2 = (lθ)[r′θ′]p′ and (lθ)[□]p′ ∈ Ectx . We have an (R, E)-peak
P = (rθ, lθ, (lθ)[r′θ′]p′).

• If p′ = ε, and l ⇒ r and l → r are variants of each other, we have rθ = r′θ′

and the (R, E)-peak P is joinable.

• Otherwise, because (lθ)[□]p′ ∈ Ectx is a flat context, every prefix of p′ but p′

itself is not a metavariable position in lθ.

– If p′ is a non-metavariable position of l, since l and l′ are patterns, l|p′ must

not be a meta-application nor an argument of a meta-application (i.e. a

variable). Therefore we have (l|p′)θ = (lθ)|p′ = l′θ′. By Lem. 3.19, there is

a unifier between l|p′ and l′σ for an appropriate lifter σ. The (R, E)-peak
P is an instance of the critical pair generated by an (R, E)-overlap.

– Otherwise, There exist sequences q1, q2, a metavariable N and a sequence

y such that: q1 ∈ Pos(l), l|q1 = N [y], q2 ∈ Pos((N [y])θ), and p′ =

q1q2. Because of the condition ((i)) of Def. 3.21, (lθ)[□]p′ ∈ Ectx im-

plies l[□]q1 , (N [y])θ[□]q2 ∈ Ectx . In particular, the latter means that

(N [y])θ ̸∈ NF(→E), and henceN is not a value metavariable. The metavari-

able N must appear at most once in both l and r, due to the condition

((iii)a) of Def. 3.21. If N does not appear in r, the (R, E)-peak P is join-

able by applying the rule l ⇒ r to t2. Otherwise, i.e. if N appears once in

r, the rule l′ → r′ can be applied to t1 thanks to the condition ((iii)b) of

Def. 3.21, and the rule l ⇒ r can be applied to t2, thanks to the condition

(3.9) of Def. 3.21. These two applications yield the same result. Therefore,

we can conclude that the (R, E)-peak P is joinable.

Inductive case. When |p| > 0, we have p = ipt for some positive number i

and some sequence pt. We have either s = f(x1.u1, . . . , xi.ui, . . . , xk.uk) or

s = M [u1, . . . , ui, . . . , uk], such that lθ = ui|pt .

Firstly, assume that we have an (R, E)-peak

P ′ = (f(x1.u1, . . . , xi.ui[rθ]pt , . . . , xk.uk), f(x1.u1, . . . , xi.ui, . . . , xl.ul), t2).

By s →E t2, there exist p′ ∈ Pos(s), (l′ → r′) ∈ E and valid θ′ such that

s|p′ = l′θ′, t2 = s[r′θ′]p′ and s[□]p′ ∈ Ectx . We proceed by case analysis on

p′ ∈ Pos(s).

24

• When p′ = ε , we have s = l′θ′ and t2 = r′θ′.

– If p is a non-metavariable position of l′, since l and l′ are patterns, l′|p must

not be a meta-application nor an argument of a meta-application (i.e. a

variable). Therefore we have (l′|p)θ′ = (l′θ′)|p = lθ. By Lem. 3.19, there is

a unifier between l′|p and lσ for an appropriate lifter σ. The (R, E)-peak
P ′ is an instance of the critical pair generated by an (E ,R)-overlap.

– Otherwise, there exist sequences q1, q2 and a metavariable M such that:

q1 ∈ Pos(l′), l′|q1 = M [y], q2 ∈ Pos(M [y]θ′), and p = q1q2. The metavari-

able M appears at most once in l′, due to the condition ((iv)) of Def. 3.21.

We can apply the rule l′ → r′ to t1. The substitution θ′ is valid, thanks to

the condition (3.9) of Def. 3.21. We can also apply the rule l ⇒ r to t2 as

many times as M appears in r′. These applications of l′ → r′ and l ⇒ r

yield the same result. The (R, E)-peak P ′ is therefore joinable.

• When p′ ̸= ε, i.e. p′ = i′p′t for some positive number i′ and some sequence p′t,

there are two possibilities.

– When i′ = i, by I.H., we have a joinable (R, E)-peakQ = (ui[rθ]pt , ui, ui[r
′θ′]p′

t
).

Because f(. . . , xi.ui[□]pt , . . .) ∈ Ectx , we have f(. . . , xi.□, . . .) ∈ Ectx too,

thanks to the condition ((i)) of Def. 3.21. Therefore, joinability of the

(R, E)-peak Q implies joinability of the (R, E)-peak P ′.

– When i′ ̸= i, we can assume that i′ < i without loss of generality. The

(R, E)-peak

P ′ =(f(. . . , xi′ .ui′ , . . . , xi.ui[rθ]pt , . . .), f(. . . , xi′ .ui′ , . . . , xi.ui, . . .),

f(. . . , xi′ .ui′ [r
′θ′]p′

t
, . . . , xi.ui, . . .))

is joinable (to f(. . . , xi′ .ui′ [r
′θ′]p′

t
, . . . , xi.ui[rθ]pt , . . .)), thanks to the con-

dition ((ii)) of Def. 3.21.

Secondly, assume that we have an (R, E)-peak

P ′ = (M [u1, . . . , ui[rθ]pt , . . . , uk], M [u1, . . . , ui, . . . , ul], t2).

By s →E t2, there exist p′ ∈ Pos(s), (l′ → r′) ∈ E and valid θ′ such that

s|p′ = l′θ′, t2 = s[r′θ′]p′ and s[□]p′ ∈ Ectx . We proceed by case analysis on

p′ ∈ Pos(s).

• When p′ = ε, M [u1, . . . , uk] = l′θ′. Because l′ is a higher-order pattern, this

is impossible.

• When p′ ̸= ε, the proof is the same as the case for the (R, E)-peak

P ′ = (f(x1.u1, . . . , xi.ui[rθ]pt , . . . , xk.uk), f(x1.u1, . . . , xi.ui, . . . , xl.ul), t2).

□

3.8.2. The three examples

Firstly, the TERSs CBVλ, Compλml∗ and Hndl are deterministic and

value-invariant. They have the refinement rule that corresponds to the so-called

eta-equivalence, e.g. λ(x.V@x) ⇒ V . It turns an abstraction, which is a value,

into a value that is identified by =Val to the original abstraction. Therefore

these TERSs are value-invariance.

25

Secondly, the three TERSs are well-behaved. Most of the conditions are triv-

ially satisfied, or easy to check. The condition (ii) can be checked by straight-

forward induction on E ∈ Ectx .

To establish local coherence, the next step is to check every critical pair is

joinable. The TERS CBVλ has the following two joinable critical pairs, which

are for the second refinement rule (the so-called eta-rule) and the sole evaluation

rule.

(λx.V x) V ′

((RRR
R

rz llllll

V V ′ V V ′

(λx′.M ′[x′]) (λx.V x)
++WWWWW

Wow gggggggggg

(λx′.M ′[x′]) V

++WWWWW
WWWW

M ′[λx.V x]

ow ggggg
gggggggg
ggg

M ′[V]

The TERS Compλml∗ has the following three critical pairs. In the following,

arrows →, ⇒ are labelled by a number that indicates which evaluation/refine-

ment rule is applied.

(λx.V x) V ′

1
''PP

PPPPr3

s{ nnn
nnnnn
nn

V V ′ V V ′

let(return(V), x.return(x))
2

++WWWW
WWWWW

Wr4

ow ggggg
ggggggggg
gggg

return(V) return(V)

let(let(return(V), x.P [x]), x′.P ′[x′])
2

**UUU
UUUUr5

nv ffffff
ffffffff

ffff

let(return(V), x.let(P [x], x′.P ′[x′]))

2 ,,XXXXX
XXXXX

let(P [V], x′.P ′[x′])

iiii
iiiiiii
iii

let(P [V], x′.P ′[x′])

The TERS Hndl has the following ten joinable critical pairs; we merge some of

them below using opi (i ∈ [2]). In the following, arrows →, ⇒ are labelled by a

number that indicates which evaluation/refinement rule is applied, and we set

26

h0 ≡ handler0(x.P [x]).

do(return(V), x.return(x))
1

))SSS
SSSr3

qy kkkk
kkkkkk
kk

return(V) return(V)

do(opi(V, y.P [y]), x.return(x))
2

++XXXX
XXXXX

XXr3

px jjjj
jjjjjjj
jjj

opi(V, y.P [y]) opi(V, y.do(P [y], x.return(x)))
r3ks

do(do(return(V), x.P [x]), x′.P ′[x′])
1

**UUU
UUUUr4

nv ffffff
ffffffff

ffff

do(return(V), x.do(P [x], x′.P ′[x′]))

1 ,,XXXXX
XXXXX

do(P [V], x′.P ′[x′])

iiii
iiiiiii
iii

do(P [V], x′.P ′[x′])

do(do(opi(V, x.P [x]), y.P2[y]), z.P3[z])
2

**UUU
UUUU

UUr4

px iiii
iiiiiiii
iiii

do(opi(V, x.P [x]), y.do(P2[y], z.P3[z]))

2 ��

do(opi(V, x.do(P [x], y.P2[y])), z.P3[z])

2��
opi(V, x.do(P [x], y.do(P2[y], z.P3[z]))) opi(V, x.do(do(P [x], y.P2[y]), z.P3[z]))

r4ks

fun(x.V x) V ′

5
&&MM

MMMr9
t| qqq

qqqqq
qq

V V ′ V V ′

with handle(h0, return(V))
9

''PP
PPP

PPr13

px hhhhh
hhhhhhhhh
hhhh

do(return(V), x.P [x])

1 **VVVV
VVVV

VVVV
P [V]

nnn
nnn

nn
nnn

nnn
nn

P [V]

with handle(h0, opi(V, y.P
′[y]))
10

++VVVV
VVVVV

Vr13

px iiii
iiiiiiii
iiii

do(opi(V, y.P
′[y]), x.P [x])

2 **UUUU
UUUU

U
opi(V, y.with handle(h0, P

′[y]))

r13ow hhhhh
hhhhhhhhh
hhhh

opi(V, y.do(P
′[y], x.P [x]))

Finally, by Thm. 3.10 and Thm. 3.22, the refinement rules R of each of the

three TERSs are improvement with respect to the evaluation rules E .

4. Further example: the call-by-need lambda-calculus

Example 4.1 (Typed call-by-need lambda-calculus [27]) A TERSCBNeedλ

of the call-by-need lambda-calculus is defined in Fig. 6. The residual syntax class

is the only syntax class in this paper that is not defined by BNF. A residual r

for a variable x contains x only once, such that r[□]p ∈ Ectx for the position p

of x in r.

27

Type signature ι, Arr(−,−)

Signature Σ

λa,b : (a → b) → Arr(a, b), (@a,b) : Arr(a, b), a → b, leta,b : a, (a → b) → b

Syntax classes Sclass

answers A ::= x | λ(x.M)

values V ::= λ(x.M) | let(M,x.V)

with =Val defined by
λ(x.t) =Val λ(y.t′)

v =Val v
′

let(t, x.v) =Val let(t′, x.v′)

residuals Rx for each variable x

x ∈ Rx

r ∈ Rx t ∈ TΣ x ̸∈ FV (t) r@t is well-typed

r@t ∈ Rx

t ∈ TΣ r ∈ Rx x ̸= y x ̸∈ FV (t) let(t, y.r) is well-typed

let(t, y.r) ∈ Rx

r ∈ Rx r′ ∈ Ry x ̸= y x ̸∈ FV (r′) let(r, y.r′) is well-typed

let(r, y.r′) ∈ Rx

Evaluation contexts Ectx E ::= □ | E@M | let(M,x.E) | let(E, x.E[x])

Evaluation rules E
λ(x.M [x])@N → let(N, x.M [x]) (1)

let(A, x.Rx[x]) → Rx[A] (2)

let(M,x.V [x])@N → let(M,x.V [x]@N) (3)

let(let(M,x.V [x]), y.Ry[y]) → let(M,x.let(V [x], y.Ry[y])) (4)

Refinement rules R
λ(x.M [x])@N ⇒ let(N, x.M [x]) (r1)

let(A, x.Rx[x]) ⇒ Rx[A] (r2)

let(M,x.V [x])@N ⇒ let(M,x.V [x]@N) (r3)

let(let(M,x.V [x]), y.Ry[y]) ⇒ let(M,x.let(V [x], y.Ry[y])) (r4)

let(M,x.N) ⇒ N (r5)

Figure 6: Call-by-need lambda-calculus

28

This TERSCBNeedλ is deterministic, value-invariant, and also well-behaved.

It has the following joinable critical pair.

let(let(M,x.V), y.Ry[y])

4
,,ZZZZZZ

r5
nv ffffffffff

let(V, y.Ry[y])
XXXXX

X
XXXXX

X
let(M,x.let(V, y.Ry[y]))

r5nv eeeeeee
eeeeeeee
e

let(V, y.Ry[y])

Therefore, by Thm. 3.10 and Thm. 3.22, the refinement rules R of the TERS

CBNeedλ are improvement with respect to the evaluation rules E .

5. Rewriting strategies and term evaluation

In term rewriting systems, a one-step rewriting strategy is a way to choose

one redex to contract in each rewriting step. In this section, we discuss several

rewriting strategies including context-sensitive rewriting and how TESs formal-

ism realizes strategies. First, we recall the ordinary definitions.

Definition 5.1

(i) A one-step rewriting strategy F is a function F on terms such that t =

F (t) if t is a normal form of a rewrite system R, and t →R F (t) otherwise

[14, Definition 4.9.1].

(ii) An innermost redex is a redex that has no proper subredex.

(iii) The innermost strategy reduces an innermost redex in each rewrite step.

(iv) The leftmost-innermost strategy reduces the leftmost-innermost redex.

5.1. The innermost strategy

Let (Type,Σ, E ,Ectx ,Sclass) be a second-order TES. Suppose that it satisfies
the following conditions:

(i) Ectx = Ctx .

(ii) Every critical pair of E is trivial.

(iii) Every metavariable in rules in E is a value-metavariable.

(iv) Val = NF(→E).

Then the evaluation →E always takes the innermost rewriting strategy. In this

setting, a valid substitution assigns a normal form to each variable in a rule.

The leftmost-innermost strategy can be realized by defining evaluation con-

texts like

E ::= □ | f(E, t2, . . . , tn) | f(V,E, t2, . . . , tn) | f(V, . . . , V, E)| · · ·

Remark 5.2 The TES E consisting of the following rules shows why the con-

dition (ii) is necessary.

f(c) → 0 (1)

f(g(x)) → 1 (2)

g(a) → c (3)

Consider the innermost rewrite sequence

f(g(a)) →E f(c) →E 0

which rewrites the underlined innermost redexes. As a TES, we obtain the first

rewrite step by an inference that instantiates the rule (3) and puts it to the

29

context f(□). However, we can also obtain an outermost rewrite as an instance

of the rule (2):

(RuleSub)
f(g(x)) → 1 ∈ E valid [x 7→ a]

f(g(a)) →E 1

We want to prohibit this, but we cannot achieve it by imposing restrictions

on context and substitution. This is because there is a non-trivial critical pair

between (2) and (3), so the condition (ii) is necessary.

5.2. Innermost strategy in rewrite systems vs call-by-value in TES

In term rewriting literature, it is often explained that the innermost rewrit-

ing realizes the call-by-value evaluation. Strictly speaking, however, they are

different. The innermost rewriting is a strategy specified by innermost redexes

merely, and the call-by-value evaluation is a calling mechanism in programming

languages, where the notion of values is also important.

To concretely show the difference, we consider a TRS (Σ,R) defined by

Σ = {0,+, g, h}, where g, h are 0-ary function symbols, and

R = {0 + y → y, s(x) + y → s(x+ y), g → h}.

Then 0 + g →R 0 + h →R h (normal form) is an innermost rewrite sequence.

We now consider a corresponding second-order TES Ecbv that adopts the

call-by-value evaluation. We take the same signature Σ with

Values V ::= 0 | s(V) Evaluation contexts E ::= □ | E + t | V + E

and a set Ecbv ≜ R of evaluation rules, but now we take the variables x, y as value

metavariables to satisfy the condition (iii) in §5.1. Then we have 0+g →E 0+h,

which is a normal form. The first +-rule is not applicable to 0 + h because the

y in the +-rule is a value variable and h is not a value. The innermost rewriting

strategy cannot simulate this behavior. Therefore, the innermost strategy and

call-by-value are different.

Remark 5.3 Note that call-by-value evaluation is not a rewriting strategy in

the formal sense of Definition 5.1 (i) because the strategy function F must

return the next rewritten term whenever the given term is not a normal form

of non-strategic rewriting. In the above case, 0 + h is not a normal form of

R, but the call-by-value evaluation does not provide the next rewritten term of

it. Therefore, the call-by-value evaluation should be considered as a restriction,

rather than a strategy, of rewriting as discussed in the case of context-sensitive

rewriting [28, Remark 1].

5.3. Context-sensitive rewriting

In the first-order setting, another established way to specify a rewriting

strategy (or more precisely, a restriction, cf. Remark 5.3) is Lucas’ context-

sensitive rewriting [13]. We first recall its definition.

Definition 5.4 (Context-sensitive rewriting [13]) A context-sensitive term

rewriting system (CS-TRS in short) (Σ,R, µ) is given by:

• a signature Σ

• a set R of rewrite rules (l ⇒ r) ∈ R such that l is not a variable and

FV (l) ⊇ FV (r)

• a replacement map µ that assigns each (f : n) ∈ Σ a subset µ(f) ⊆ [n].

30

A replacement map µ, which is the core of context-sensitive rewriting, speci-

fies where rewriting can happen. Specifically, it induces a set Posµ(t) of positions
of a term t as follows.

Posµ(x) = {ε}, Posµ(f(t1, . . . , tn)) = {ε} ∪
∪

i∈µ(f)

i.Posµ(ti).

A CS-TRS (Σ,R, µ) induces the following rewrite relation ↪→R,µ.

subst θ (l ⇒ r) ∈ R p ∈ Posµ(t) t|p = lθ u = t[rθ]p
t ↪→R,µ u

A rewrite l ⇒ r can only happen when the position p is an active position, i.e.

p satisfies p ∈ Posµ(t).
Although context-sensitive rewriting can restrict where rewriting can hap-

pen, it does not inherently specify in which order rewriting can happen. Indeed,

any CS-TRS can be translated into a potentially nondeterministic TES.

Definition 5.5 (Nondeterministic construction) Given a CS-TRS (Σ,R, µ),

we define a first-order TES (Σ, E ,Ectx ,Val) as follows.

• E = {l → r | (l ⇒ r) ∈ R}

• Let Σactive = {f ∈ Σ | ∃(l → r) ∈ E . ∃t1, . . . , tn ∈ TΣ. l = f(t1, . . . , tn)},
and Σpassive = Σ\Σactive . The sets Ectx and Val are inductively defined

as below.

□ ∈ Ectx

(f : n) ∈ Σ n > 0 i ∈ µ(f) E ∈ Ectx {tj ∈ TΣ}j∈[n]\{i}

f(t1, . . . , ti−1, E, ti+1, . . . , tn) ∈ Ectx

(f : n) ∈ Σpassive {tj ∈ Val}j∈µ(f) {tj ∈ TΣ}j∈[n]\µ(f)

f(t1, . . . , tn) ∈ Val

We call this construction nondeterministic to emphasize that the resulting eval-

uation relation →E is potentially nondeterministic.

Proposition 5.6 Let (Σ,R, µ) be a CS-TRS and (Σ, E ,Ectx ,Val) be the TES

obtained from the CS-TRS by the nondeterministic construction. We have:

t ↪→R,µ u ⇐⇒ t →E u

Proof. [⇐]: There exist (l → r) ∈ E , E ∈ Ectx and subst θ such that t = E[lθ]

and u = E[rθ]. Let p be the position of □ in E. By construction of Ectx , we

have p ∈ Posµ(E[lθ]).

[⇒]: There exist (l → r) ∈ E , subst θ and p ∈ Posµ(t) such that t|p = lθ

and u = t[rθ]p. We can prove by straightforward induction on p that we have

t[□]p ∈ Ectx .

In summary, every CS-TRS can be simulated by a nondeterministic TES.

However, a deterministic TES cannot, in general, be simulated by a CS-TRS.

For example, a replacement map µ(if) = {1} specifies that only the first ar-

gument (i.e. the guard t of if(t, s1, s2)) can be rewritten. The nondeterministic

construction encodes this into evaluation contexts as E ::= □ | if(E, s1, s2).

Another example is µ(+) = {1, 2} that specifies both of the two arguments

of summation + can be rewritten. This is encoded as

E ::= □ | E + t | t+ E.

31

This specification of evaluation contexts induces a nondeterministic evaluation

relation→E ; both (1+2)+(3+4) →E 3+(3+4) and (1+2)+(3+4) →E (1+2)+7

are possible. Note the difference with a left-to-right deterministic specification

of evaluation contexts

E ::= □ | E + t | v + E

where v represents a value. With this specification, only (1 + 2) + (3 + 4) →E
3+ (3+4) is possible, and (1+2)+ (3+4) →E (1+2)+7 is impossible because

1 + 2 is not a value and (1 + 2) +□ is not a valid evaluation context.

This example shows a difference between context-sensitive rewriting and

TES. Context-sensitive rewriting does not inherently specify an evaluation or-

der on function arguments, such as left-to-right evaluation, whereas TES can

explicitly define an evaluation order.

Another example showing a difference is in the comparison with the call-

by-value evaluation in §5.2. Context-sensitive rewriting does not inherently

simulate the behavior of TES Ecbv.

The following is taken from the literature on context-sensitive rewriting.

Example 5.7 (Nats [13, Ex. 8.19]) Let Nats be the TERS defined as fol-

lows.

Signature Σ nats : 0, inc : 1, hd : 1, tl : 1, (:) : 2,

s : 1, 0: 0

Values Val V ::= 0 | s(V) | V : t

with =Val defined by

0 =Val 0

V =Val V
′

s(V) =Val s(V
′)

V =Val V
′ t, t′ ∈ TΣ

V : t =Val V
′ : t′

Evaluation contexts Ectx E ::= □ | hd(E) | tl(E) | inc(E) | E : t | s(E)

Evaluation rules E Refinement rule R
nats → 0 : inc(nats) tl(inc(nats)) ⇒ inc(tl(nats))

inc(x : y) → s(x) : inc(y)

hd(x : y) → x

tl(x : y) → y

This TERS Nats is deterministic, value-invariant and locally coherent. By

Thm. 2.7, its refinement R is improvement w.r.t. its evaluation E . In the proof

of local coherence, we observe that the TERS Nats has one critical pair; it is

joinable as in Fig. 7. The direction of refinement, which we reversed compared

to the original [13], is crucial. Refinement must not increase the number of

evaluation steps.

Another point we highlight is that the context-sensitive rewriting systems

are currently formulated as untyped, first-order systems only. In contrast, the

second-order TERS framework incorporates types and higher-order functions,

making it suitable for more faithfully modelling the operational semantics for

real-world lazy and strict higher-order typed functional programming languages,

such as Haskell and ML, as demonstrated in Example 3.3, 3.11, 3.12, 3.13, and

4.1.

32

tl(inc(nats))

++WWWW
WWWWW

ow ggggg
gggggggg
ggg

inc(tl(nats))

��

tl(inc(0 : inc(nats)))

��
inc(tl(0 : inc(nats)))

++WWWW
WWWW

tl(s(0) : inc(inc(nats)))

ssggggg
gggg

inc(inc(nats))

Figure 7: Joinability of the critical pair

6. Related work

6.1. Evaluation from the term-rewriting perspective

Unlike general term rewriting (i.e., refinement), evaluation that uses Felleisen’s

evaluation contexts has received little attention in the rewriting literature. As

an exception, Faggian et al. [7, 29] studied evaluation for specific simplified com-

putational lambda-calculi including λml∗. They proved that refinement implies

observational equivalence, crucially using the fact that refinement is confluent

in these calculi. In contrast, we study evaluation for general TERS. We iden-

tify sufficient conditions (e.g. local coherence) for contextual improvement, not

relying on confluence of refinement.

6.2. Proof methodologies for improvement

There is rich literature on methodologies for proving observational equiv-

alence [30, 31, 32, 33]. Some methodologies have been applied to effect han-

dlers [34, 35]. We provide a novel term-rewriting-theoretic methodology centred

around local coherence and critical pair analysis.

Our methodology is partly automatable, thanks to the fact that critical

pair analysis for second-order computation systems can be automated [20, 9].

Our prototype analyzer based on this technology could automatically check

the joinability of the critical pairs in the examples. There are few works on

automating observational equivalence proofs for functional programs. Known

examples, including the tool SyTeCi [36], are based on or inspired by algorithmic

game semantics [37].

This work is targeted at contextual improvement, a quantitative variant

of observational equivalence. There is relatively limited literature on proof

methodologies for contextual improvement. A coinductive approach based on

applicative bisimulation has been used for space improvement [38] and time im-

provement [39]. This line of work, however, does not come with any form of

automation.

7. Conclusion and future work

We formalised evaluation from the term-rewriting perspective, and intro-

duced TERS in both first-order and second-order settings. To validate refine-

ment (which models optimisation) with respect to evaluation, we employed the

concept of contextual improvement, and identified sufficient conditions for it.

The key condition is local coherence, for which we developed critical pair anal-

ysis. We demonstrated TERS with examples including λml∗ and its extension

with effect handlers.

33

This work contributes to bridging the gap between general term rewriting

and evaluation, by introducing TERS. We are interested in bringing more term-

rewriting techniques and insights to evaluation; for example to check if a TERS

is deterministic, and if refinement implies observational equivalence instead of

contextual improvement.

This work was supported in part by JSPS, KAKENHI Project No. 20H04164,

and No. 22K17850, Japan.

References

[1] M. Felleisen, The theory and practice of first-class prompts, in: J. Fer-

rante, P. Mager (Eds.), Conference Record of the Fifteenth Annual ACM

Symposium on Principles of Programming Languages, San Diego, Cal-

ifornia, USA, January 10-13, 1988, ACM Press, 1988, pp. 180–190.

doi:10.1145/73560.73576.

URL https://doi.org/10.1145/73560.73576

[2] M. Felleisen, lambda-v-cs: An extended lambda-calculus for scheme, in:

J. Chailloux (Ed.), Proceedings of the 1988 ACM Conference on LISP and

Functional Programming, LFP 1988, Snowbird, Utah, USA, July 25-27,

1988, ACM, 1988, pp. 72–85. doi:10.1145/62678.62686.

URL https://doi.org/10.1145/62678.62686

[3] J. H. Morris Jr, Lambda-calculus models of programming languages., Ph.D.

thesis, Massachusetts Institute of Technology (1969).

[4] D. Sands, Total correctness by local improvement in the transformation

of functional programs, ACM Trans. Program. Lang. Syst. 18 (2) (1996)

175–234. doi:10.1145/227699.227716.

[5] K. Muroya, Hypernet semantics of programming languages, Ph.D. thesis,

University of Birmingham (2020).

URL https://etheses.bham.ac.uk/id/eprint/10433/

[6] A. Sabry, P. Wadler, A reflection on call-by-value, in: R. Harper, R. L.

Wexelblat (Eds.), Proceedings of the 1996 ACM SIGPLAN Interna-

tional Conference on Functional Programming, ICFP 1996, Philadel-

phia, Pennsylvania, USA, May 24-26, 1996, ACM, 1996, pp. 13–24.

doi:10.1145/232627.232631.

URL https://doi.org/10.1145/232627.232631

[7] C. Faggian, G. Guerrieri, R. Treglia,

Evaluation in the computational calculus is non-confluent, in: 10th

International Workshop of Confluence, IWC 2021, 2021, pp. 31–36.

URL http://www.lix.polytechnique.fr/iwc2021/papers/IWC_2021_paper_6.pdf

[8] Y. Toyama, Commutativity of term rewriting systems, North-Holland,

1988, pp. 393–407.

[9] M. Hamana, T. Abe, K. Kikuchi, Polymorphic computation systems: Theory and practice of confluence with call-by-value,

Sci. Comput. Program. 187 (2020) 102322.

doi:10.1016/J.SCICO.2019.102322.

URL https://doi.org/10.1016/j.scico.2019.102322

34

[10] G. P. Huet, Confluent reductions: Abstract properties and appli-

cations to term rewriting systems: Abstract properties and appli-

cations to term rewriting systems, J. ACM 27 (4) (1980) 797–821.

doi:10.1145/322217.322230.

[11] T. Aoto, Y. Toyama, A reduction-preserving completion for proving con-

fluence of non-terminating term rewriting systems, Log. Methods Comput.

Sci. 8 (1). doi:10.2168/LMCS-8(1:31)2012.

[12] K. Muroya, M. Hamana, Term evaluation systems with refinements: First-order, second-order, and contextual improvement,

in: J. Gibbons, D. Miller (Eds.), Functional and Logic Programming - 17th

International Symposium, FLOPS 2024, Kumamoto, Japan, May 15-17,

2024, Proceedings, Vol. 14659 of Lecture Notes in Computer Science,

Springer, 2024, pp. 31–61. doi:10.1007/978-981-97-2300-3_3.

URL https://doi.org/10.1007/978-981-97-2300-3_3

[13] S. Lucas, Context-sensitive rewriting, ACM Comput. Surv. 53 (4) (2021)

78:1–78:36. doi:10.1145/3397677.

URL https://doi.org/10.1145/3397677

[14] Terese, Term Rewriting Systems, no. 55 in Cambridge Tracts in Theoretical

Computer Science, Cambridge University Press, 2003.

[15] M. Hamana, Equivalence of the quotient term model and the least complete

herbrand model for a functional-logic language, Journal of Functional and

Logic Programming 1997 (1).

[16] G. P. Huet, J. Hullot, Proofs by induction in equational theories with constructors,

J. Comput. Syst. Sci. 25 (2) (1982) 239–266.

doi:10.1016/0022-0000(82)90006-X.

URL https://doi.org/10.1016/0022-0000(82)90006-X

[17] M. Hamana, Free Σ-monoids: A higher-order syntax with metavariables,

in: W. Chin (Ed.), Programming Languages and Systems: Second Asian

Symposium, APLAS 2004, Taipei, Taiwan, November 4-6, 2004. Proceed-

ings, Vol. 3302 of Lecture Notes in Computer Science, Springer, 2004, pp.

348–363. doi:10.1007/978-3-540-30477-7_23.

[18] M. Fiore, Second-order and dependently-sorted abstract syntax, in: Proc.

of LICS’08, 2008, pp. 57–68.

[19] M. Fiore, O. Mahmoud, Second-order algebraic theories, in: Proc. of

MFCS’10, LNCS 6281, 2010, pp. 368–380.

[20] M. Hamana, How to prove decidability of equational theories with second-order computation analyser SOL,

J. Funct. Program. 29 (2019) e20. doi:10.1017/S0956796819000157.

URL https://doi.org/10.1017/S0956796819000157

[21] F. Blanqui, Termination and confluence of higher-order rewrite systems, in:

Rewriting Techniques and Application (RTA 2000), LNCS 1833, Springer,

2000, pp. 47–61.

[22] S. Staton, Instances of computational effects: An algebraic perspective, in:

Proc. of LICS’13, 2013, p. 519.

[23] D. Miller, A logic programming language with lambda-abstraction, function variables, and simple unification,

J. Log. Comput. 1 (4) (1991) 497–536. doi:10.1093/logcom/1.4.497.

URL https://doi.org/10.1093/logcom/1.4.497

35

[24] G. D. Plotkin, Call-by-name, call-by-value and the lambda-calculus, Theor.

Comp. Sci. 1 (2) (1975) 125–259. doi:10.1016/0304-3975(75)90017-1.

[25] M. Pretnar, An introduction to algebraic effects and handlers. invited tutorial paper,

in: D. R. Ghica (Ed.), The 31st Conference on the Mathematical Founda-

tions of Programming Semantics, MFPS 2015, Nijmegen, The Netherlands,

June 22-25, 2015, Vol. 319 of Electronic Notes in Theoretical Computer

Science, Elsevier, 2015, pp. 19–35. doi:10.1016/J.ENTCS.2015.12.003.

URL https://doi.org/10.1016/j.entcs.2015.12.003

[26] R. Mayr, T. Nipkow, Higher-order rewrite systems and their confluence,

Theor. Comput. Sci. 192 (1) (1998) 3–29.

doi:10.1016/S0304-3975(97)00143-6.

URL https://doi.org/10.1016/S0304-3975(97)00143-6

[27] J. Maraist, M. Odersky, D. N. Turner, P. Wadler, Call-by-name, call-

by-value, call-by-need and the linear lambda calculus, Theor. Comp. Sci.

228 (1-2) (1999) 175–210. doi:10.1016/S0304-3975(98)00358-2.

[28] S. Lucas, Context-sensitive rewriting strategies, Inf. Comput. 178 (1)

(2002) 294–343. doi:10.1006/inco.2002.3176.

URL https://doi.org/10.1006/inco.2002.3176

[29] C. Faggian, G. Guerrieri, U. de’Liguoro, R. Treglia,

On reduction and normalization in the computational core, Math. Struct.

Comput. Sci. 32 (7) (2022) 934–981. doi:10.1017/S0960129522000433.

URL https://doi.org/10.1017/S0960129522000433

[30] S. Abramsky, The lazy lambda-calculus, Addison Wesley, 1990, pp. 65–117.

[31] V. Koutavas, P. Levy, E. Sumii, From applicative to environmental

bisimulation, Elect. Notes in Theor. Comp. Sci. 276 (2011) 215–235.

doi:10.1016/j.entcs.2011.09.023.

[32] G. D. Plotkin, Lambda-definability and logical relations, memorandum

SAI-RM-4 (1973).

[33] R. Statman, Logical relations and the typed lambda-

calculus, Information and Control 65 (2/3) (1985) 85–97.

doi:10.1016/S0019-9958(85)80001-2.

[34] D. Biernacki, M. Piróg, P. Polesiuk, F. Sieczkowski,

Handle with care: relational interpretation of algebraic effects and handlers,

Proc. ACM Program. Lang. 2 (POPL) (2018) 8:1–8:30.

doi:10.1145/3158096.

URL https://doi.org/10.1145/3158096

[35] D. Biernacki, S. Lenglet, P. Polesiuk,

A complete normal-form bisimilarity for algebraic effects and handlers,

in: Z. M. Ariola (Ed.), 5th International Conference on Formal Struc-

tures for Computation and Deduction, FSCD 2020, June 29-July

6, 2020, Paris, France (Virtual Conference), Vol. 167 of LIPIcs,

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, pp. 7:1–

7:22. doi:10.4230/LIPICS.FSCD.2020.7.

URL https://doi.org/10.4230/LIPIcs.FSCD.2020.7

36

[36] G. Jaber, Syteci: automating contextual equivalence for higher-order programs with references,

Proc. ACM Program. Lang. 4 (POPL) (2020) 59:1–59:28.

doi:10.1145/3371127.

URL https://doi.org/10.1145/3371127

[37] S. Abramsky, Algorithmic game semantics: a tutorial introduction, in:

NATO Advanced Study Institute 2001, 2001, pp. 21–47.

[38] E. Sumii, A bisimulation-like proof method for contextual properties in untyped lambda-calculus with references and deallocation,

Theor. Comput. Sci. 411 (51-52) (2010) 4358–4378.

doi:10.1016/J.TCS.2010.09.009.

URL https://doi.org/10.1016/j.tcs.2010.09.009

[39] U. D. Lago, F. Gavazzo, Effectful normal form bisimulation, in: L. Caires

(Ed.), Programming Languages and Systems - 28th European Sympo-

sium on Programming, ESOP 2019, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2019,

Prague, Czech Republic, April 6-11, 2019, Proceedings, Vol. 11423

of Lecture Notes in Computer Science, Springer, 2019, pp. 263–292.

doi:10.1007/978-3-030-17184-1_10.

URL https://doi.org/10.1007/978-3-030-17184-1_10

37

