Universal Algebra for
 Termination of Higher-Order Rewriting

Makoto Hamana

Department of Computer Science, Gunma University, Japan

RTA'05
2005, April

Intro: First-Order Term Rewriting System (TRS)

\triangleright Terms $T_{\Sigma} \boldsymbol{X} \ni t::=x \mid f\left(t_{1}, \ldots, t_{m}\right)$
\triangleright Rewrite rules $\mathcal{R}=\left\{t_{1} \rightarrow t_{2}, \ldots\right\}$
\triangleright Rewrite relation $\rightarrow_{\boldsymbol{R}}$
\triangleright An important problem: termination of \mathcal{R}

Intro: Complete Algebraic Characterisation of TRSs

Theorem [Lankford'79, Zantema'94]
A TRS \mathcal{R} is terminating if and only if there exists a well-founded monotone $(\boldsymbol{\Sigma}, \mathcal{R})$-algebra.
("ordered" $\boldsymbol{\Sigma}$-algebra $\left(\boldsymbol{A},>_{A}\right)$ that validates all rules in \mathcal{R})
I. Useful: Finding a well-founded $(\boldsymbol{\Sigma}, \mathcal{R})$-algebra implies termination of \mathcal{R}
II. Fundamental: Sound and complete semantics of TRS
III. Applications: Semantic labeling, monadic modularity, etc.

Q. Does a similar theorem hold for higher-order* rewriting?

* Rewriting on terms with variable binding and (meta-level) substitutions

A General Church-Rosser Theorem Aczel (1978)
 (unpublished manuscript)

Binding Algebras:
A Step between
Universal Algebra and Type Theory
Plotkin (1998)
(RTA'98, Tsukuba, Japan)

Abstract Syntax and Variable Binding
Fiore, Plotkin, Turi (LICS'99)

This work (RTA'05)
Universal Algebra for Termination of Higher-Order Rewriting

Contents

Algebraic semantics for
I. CRS rewriting
II. CRS meta-rewriting
III. Binding CRSs

Combinatory Reduction System (CRS) [Klop'80]

Example: conversion into prenex normal form

$$
\begin{array}{llll}
\mathrm{P} \wedge \forall(x . \mathrm{Q}[x]) & \rightarrow \forall(x . \mathrm{P} \wedge \mathrm{Q}[x]) & \neg \forall(x \cdot \mathrm{Q}[x]) & \rightarrow \exists(x \cdot \neg(\mathrm{Q}[x])) \\
\forall(x \cdot \mathrm{Q}[x]) \wedge \mathrm{P} & \rightarrow \forall(x . \mathrm{P} \wedge \mathrm{Q}[x]) & \neg \exists(x \cdot \mathrm{Q}[x]) & \rightarrow \forall(x \cdot \neg(\mathrm{Q}[x]))
\end{array}
$$

Definition

Variables
Metavariables
Function symbols
Terms
Meta-terms
CRS rules \mathcal{R}
CRS rewriting $\rightarrow_{\mathcal{R}}$

$$
\frac{l \rightarrow r \in \mathcal{R}}{\theta(l) \rightarrow_{\mathcal{R}} \theta(r)} \quad \frac{s \rightarrow_{\mathcal{R}} t}{x . s \rightarrow_{\mathcal{R}} x . t} \quad \frac{s \rightarrow_{\mathcal{R}} t}{F(\ldots, s, \ldots) \rightarrow_{\mathcal{R}} F(\ldots, t, \ldots)}
$$

A valuation θ is a mapping from metavariables to terms.

Technical Framework

Algebras in the functor category Set $^{\mathbb{F}}$ (first-order case: algebras are in Set)
$\mathbb{F} \cdot$. the category of natural numbers and all functions
A presheaf $\boldsymbol{X} \in \mathbf{S e t}^{\mathbb{F}}$ is an \mathbb{N}-indexed set with arrow part.
Definition [Fiore,Plotkin, Turi]
$\boldsymbol{\Sigma} \cdots$ the functor $\boldsymbol{\Sigma}:$ Set $^{\mathbb{F}} \rightarrow$ Set $^{\mathbb{F}}$ given by a binding signature
A Σ-monoid consists of
\triangleright a monoid object \boldsymbol{A} in the monoidal category (Set $^{\mathbb{F}}, \bullet, \mathbf{V}$) with
\triangleright a $\boldsymbol{\Sigma}$-algebra $\alpha: \boldsymbol{\Sigma} \boldsymbol{A} \rightarrow \boldsymbol{A}$
such that "the monoid multiplication and α commutes".

Technical Framework

Algebras in the functor category Set ${ }^{\mathbb{F}}$ (first-order case: algebras are in Set)
$\mathbb{F} \cdot$. the category of natural numbers and all functions
A presheaf $\boldsymbol{X} \in \boldsymbol{S e t}^{\mathbb{F}}$ is an \mathbb{N}-indexed set with arrow part.

Definition [Fiore,Plotkin,Turi]

$\boldsymbol{\Sigma} \cdots$ the functor $\boldsymbol{\Sigma}: \mathbf{S e t}^{\mathbb{F}} \rightarrow$ Set $^{\mathbb{F}}$ given by a binding signature
A Σ-monoid consists of
\triangleright a monoid object $=$ modelling substitutions
\triangleright a $\boldsymbol{\Sigma}$-algebra $=$ modelling $\boldsymbol{\Sigma}$-terms
such that "substitution on $\boldsymbol{\Sigma}$-term" is defined.

Structural Terms

Observation

Syntax given by the free $\boldsymbol{\Sigma}$-monoid $\boldsymbol{M}_{\boldsymbol{\Sigma}} \hat{\boldsymbol{Z}}$ over $\hat{\boldsymbol{Z}}$ [Hamana APLAS'04]

$$
M_{\Sigma} \hat{Z}(n) \ni t::=x\left|F^{l}\left(n+1, \ldots, n+i . t_{1}, \ldots, n+1, \ldots, n+l . t_{l}\right)\right| \mathbb{Z}^{l}\left[t_{1}, \ldots, t_{l}\right]
$$

- Similarity to CRS Meta-terms

$$
t::=x|x . t| F^{l}\left(t_{1}, \ldots, t_{l}\right) \mid \mathbb{z}^{l}\left[t_{1}, \ldots, t_{l}\right]
$$

Binding signature Σ
$F:\left\langle n_{1}, \ldots, n_{l}\right\rangle \in \Sigma \quad(1 \leq i \leq l)$
\boldsymbol{F} has \boldsymbol{l} arguments and binds $\boldsymbol{n}_{\boldsymbol{i}}$ variables in the \boldsymbol{i}-th argument.

- Define Structural meta-terms by meta-terms built from a binding signature.
- Then, structural meta-terms forms a free Σ-monoid.
- Structural meta-terms have a good structural induction principle (due to the initial algebra property).

Algebraic Semantics of CRS Syntax

By [Fiore,Plotkin,Turi'99] [Hamana'04],
Thm. Structural CRS terms $\boldsymbol{T}_{\boldsymbol{\Sigma}} \mathbf{V}$ forms an initial $\mathbf{V}+\boldsymbol{\Sigma}$-algebra.
Thm. Structural CRS meta-terms $M_{\Sigma} Z$ forms a free Σ-monoid over \hat{Z}.
Assumption: Use the method of de Bruijn levels for (meta-)terms

- CRS's variables are $1,2,3, \cdots \in \mathbb{N}$.

Presheaves: Use structural (mata-)term sets parameterised by the set of free variables $n=\{1, \ldots, n\}$.

Define

$$
\begin{aligned}
\mathrm{V}(n) & \triangleq\{1, \ldots, n\}=n \quad \text { "vars from } 1 \text { to } n " \\
T_{\Sigma} \mathrm{V}(n) & \triangleq\{t \mid \text { term } t \text { has } n \text {-free vars }\} \\
M_{\Sigma} Z(n) & \triangleq\{t \mid \text { meta-term } t \text { has } n \text {-free vars }\} \\
Z(l) & \triangleq\{\mathrm{Z} \mid \text { metavariable } \mathrm{Z} \text { has arity } l\}
\end{aligned}
$$

Then, $\mathrm{V}, \hat{Z}, \boldsymbol{T}_{\Sigma} \mathrm{V}, M_{\Sigma} Z \in \mathbf{S e t}^{\mathbb{F}}$.

Structural CRSs

Definition

A Structural CRS is a CRS built from structural meta-terms.
Similarly for other syntactic objects: valuation, rewrite relation.

Assumption:

Hereafter, we only consider structural CRSs.
We just say "a CRS" for a structural CRS.

Algebraic Semantics of CRS rewriting

Example: $Z=\left\{\mathrm{M}^{\mathbf{1}}, \mathrm{N}^{0}\right\} \quad$ CRS for untyped λ-calculus

$$
\text { Rule } \quad \operatorname{app}(\operatorname{lam}(1 . \mathrm{M}), \mathrm{N}) \rightarrow \mathrm{M}[\mathrm{~N}] \quad \frac{l \rightarrow r \in \mathcal{R}}{\theta(l) \rightarrow_{\mathcal{R}} \theta(r)}
$$

\triangleright Valuation $\theta: Z \longrightarrow \boldsymbol{T}_{\boldsymbol{\Sigma}} \mathbf{V}$ into terms.

$$
\begin{aligned}
& \mathrm{M}^{\mathbf{1}} \longmapsto t \in \boldsymbol{T}_{\Sigma} \mathbf{V}(\mathbf{1}) \quad \text { " } t \text { has at most 1-free var" } \\
& \mathrm{N}^{\mathbf{0}} \longmapsto s \in \boldsymbol{T}_{\Sigma} \mathbf{V}(\mathbf{0}) \quad \text { " } s \text { has no free vars" }
\end{aligned}
$$

- A valuation is characterised as a morphism of Set ${ }^{\mathbb{F}}$.
\triangleright How to interpret rewrite rules?

Algebraic Semantics of CRS rewriting

Example: $Z=\left\{\mathrm{M}^{\mathbf{1}}, \mathrm{N}^{0}\right\} \quad$ CRS for untyped λ-calculus

$$
\text { Rule } \quad \operatorname{app}(\operatorname{lam}(1 . \mathrm{M}), \mathrm{N}) \rightarrow \mathrm{M}[\mathrm{~N}] \quad \frac{l \rightarrow r \in \mathcal{R}}{\theta(l) \rightarrow_{\mathcal{R}} \theta(r)}
$$

\triangleright Valuation $\theta: Z \longrightarrow \boldsymbol{T}_{\boldsymbol{\Sigma}} \mathbf{V}$ into terms.

$$
\begin{aligned}
& \mathrm{M}^{\mathbf{1}} \longmapsto t \in \boldsymbol{T}_{\Sigma} \mathbf{V}(\mathbf{1}) \quad \text { "t has at most 1-free var" } \\
& \mathrm{N}^{\mathbf{0}} \longmapsto s \in \boldsymbol{T}_{\Sigma} \mathbf{V}(\mathbf{0}) \quad \text { " } s \text { has no free vars" }
\end{aligned}
$$

- A valuation is characterised as a morphism of Set ${ }^{\mathbb{F}}$.
\triangleright How to interpret rewrite rules?

Algebraic semantics of CRS rewriting

$$
\begin{aligned}
& Z \xrightarrow{\eta_{Z}} M_{\Sigma} Z \quad Z \mid n \vdash l \rightarrow r \in \mathcal{R} \\
& \theta^{*} \quad \text { unique } \Sigma \text {-monoid mor. } \\
& \Sigma \text {-monoid } \quad T_{\Sigma} \mathbf{V} \quad \theta_{n}^{*}(l) \rightarrow_{\mathcal{R}} \theta_{n}^{*}(r) \\
& \binom{=\text { initial }}{v+\Sigma \text {-algebra }} \downarrow!_{A} \quad \text { unique } V+\Sigma \text {-algebra hom. } \\
& \mathrm{V}+\Sigma \text {-algebra } A \quad!_{A} \theta_{n}^{*}(l)>_{A(n)}!_{A} \theta_{n}^{*}(l) \quad!_{A(n)}(s)>_{A(n)}!_{A(n)}(t) \\
& \text { • }(\mathrm{V}+\Sigma, \mathcal{R}) \text {-algebra }
\end{aligned}
$$

Theorem For any $(\mathbf{V}+\boldsymbol{\Sigma}, \mathcal{R})$-algebra \boldsymbol{A}, there exists a unique monotone homomorphism $\left(\boldsymbol{T}_{\Sigma} \mathrm{V}, \rightarrow_{\mathcal{R}}^{+}\right) \longrightarrow\left(A,>_{A}\right)$.

Algebraic semantics of CRS rewriting

Main Theorem 1 (Complete characterisation of termination)
A CRS \mathcal{R} is terminating if and only if there exists a well-founded ($\mathrm{V}+\Sigma, \mathcal{R}$)-algebra.

Meta-rewriting

More direct interpretation is possible.

- Rewriting on Meta-terms = Meta-rewriting

CRS (\mathcal{R}, Z)

$$
\begin{gathered}
\frac{\vec{n} . l \rightarrow \vec{n} . r \in \mathcal{R}}{n \vdash \theta^{*}(n)(l) \rightsquigarrow_{\mathcal{R}} \theta^{*}(n)(l)} \quad \frac{n+i \vdash s \rightsquigarrow_{\mathcal{R}} t}{n \vdash F(\ldots, n+\vec{i} . s, \ldots) \rightsquigarrow_{\mathcal{R}} F(\ldots, n+\vec{i} . t, \ldots)} \\
\frac{\mathrm{Z} \in Z(l) \quad n \vdash s \rightsquigarrow_{\mathcal{R}} t}{n \vdash \mathrm{Z}[\ldots, s, \ldots] \rightsquigarrow_{\mathcal{R}} \mathrm{Z}[\ldots, t, \ldots]}
\end{gathered}
$$

θ is a mapping $\boldsymbol{Z} \longrightarrow \boldsymbol{M}_{\boldsymbol{\Sigma}} \boldsymbol{X}$ to meta-terms

Algebraic Semantics of Meta-rewriting

Theorem $\forall A$: (Σ, \mathcal{R})-monoid

Main Theorem 2 (Complete characterisation of meta-termination)
A CRS (\mathcal{R}, Z) is meta-terminating if and only if there exists a well-founded $(\boldsymbol{\Sigma}, \mathcal{R})$-monoid.

Binding CRSs

(Essentially) meta-application free fragment
\triangleright Simpler interpretation not using monoid structure
\triangleright Example:

$$
\begin{array}{llll}
\mathrm{P} \wedge \forall(x . \mathrm{Q}[x]) & \rightarrow \forall(x . \mathrm{P} \wedge \mathrm{Q}[x]) & \neg \forall(x . \mathrm{Q}[x]) & \rightarrow \exists(x . \neg(\mathrm{Q}[x])) \\
\forall(x . \mathrm{Q}[x]) \wedge \mathrm{P} & \rightarrow \forall(x . \mathrm{P} \wedge \mathrm{Q}[x]) & \neg \exists(x . \mathrm{Q}[x]) & \rightarrow \forall(x . \neg(\mathrm{Q}[x]))
\end{array}
$$

\triangleright Crucial fact: for the presheaves Z :metavariables, \mathbf{V} :vars, \mathbf{V} is the unit of the monoidal category $\left(\mathbf{S e t}^{\mathbb{F}}, \bullet, \mathbf{V}\right)$.

Binding CRSs

(Essentially) meta-application free fragment
\triangleright Simpler interpretation not using monoid structure
\triangleright Example:

$$
\begin{array}{llll}
\mathrm{P} \wedge \forall(x . \mathrm{Q}[x]) & \rightarrow \forall(x . \mathrm{P} \wedge \mathrm{Q}[x]) & \neg \forall(x . \mathrm{Q}[x]) & \rightarrow \exists(x . \neg(\mathrm{Q}[x])) \\
\forall(x . \mathrm{Q}[x]) \wedge \mathrm{P} & \rightarrow \forall(x . \mathrm{P} \wedge \mathrm{Q}[x]) & \neg \exists(x . \mathrm{Q}[x]) & \rightarrow \forall(x . \neg(\mathrm{Q}[x]))
\end{array}
$$

\triangleright Crucial fact: for the presheaves \boldsymbol{Z} :metavariables, \mathbf{V} :vars, $Z \bullet \mathrm{~V} \cong Z \quad$ e.g. $Z \bullet \mathrm{~V}(1) \ni \mathrm{Q}[x]=\mathrm{Q} \in Z(1)$
\triangleright Binding CRSs $\stackrel{\text { def }}{\Longleftrightarrow}$ CRSs consisting of binding meta-terms
($\boldsymbol{Z}, \mathbf{V}$ and $\boldsymbol{\Sigma}$-terms)
$t::=x\left|F\left(x_{1} \cdots x_{i_{1}} \cdot t_{1}, \ldots, x_{1} \cdots x_{i_{l}} . t_{l}\right)\right| \mathrm{z}^{l} \quad\left(=\mathrm{z}^{l}[1, \ldots, l]\right)$
\triangleright Consider $\boldsymbol{Z}+\mathbf{V}+\boldsymbol{\Sigma}$-algebras Binding meta-terms $=$ the initial $\boldsymbol{Z}+\mathbf{V}+\boldsymbol{\Sigma}$-algebra

Algebraic Semantics of Binding CRSs

\triangleright Redo everything for binding CRSs. We again obtain:
\triangleright Proposition
A binding CRS $(\mathcal{R}, \boldsymbol{Z})$ is meta-terminating on all binding meta-terms if and only if there exists a well-founded $(Z+\mathbf{V}+\boldsymbol{\Sigma}, \mathcal{R})$-algebra.
\triangleright This gives a simpler interpretation method of showing termination of binding CRSs:
because $\{$ binding meta-terms $\} \supseteq\{$ terms $\}$.

Binding CRSs - Termination Proof

Example

$$
\begin{array}{llll}
\mathrm{P} \wedge \forall(x . \mathrm{Q}[x]) & \rightarrow \forall(x . \mathrm{P} \wedge \mathrm{Q}[x]) & \neg \forall(x \cdot \mathrm{Q}[x]) & \rightarrow \exists(x \cdot \neg(\mathrm{Q}[x])) \\
\forall(x \cdot \mathrm{Q}[x]) \wedge \mathrm{P} & \rightarrow \forall(x . \mathrm{P} \wedge \mathrm{Q}[x]) & \neg \exists(x \cdot \mathrm{Q}[x]) & \rightarrow \forall(x \cdot \neg(\mathrm{Q}[x]))
\end{array}
$$

$Z+\mathbf{V}+\boldsymbol{\Sigma}$-algebra \boldsymbol{K} :
Carrier: $\boldsymbol{K}(\boldsymbol{n})=\mathbb{N}$ with the usual order
Operations:

$$
\begin{gathered}
\wedge_{K(n)}(x, y)=\vee_{K(n)}(x, y)=2 x+2 y \\
\neg_{K(n)}(x)=2 x \quad \forall_{K(n)}(x)=\exists_{K(n)}(x)=x+1
\end{gathered}
$$

$Z+\mathbf{V}+\boldsymbol{\Sigma}$-algebra K satisfies \mathcal{R}. i.e. $(Z+\mathbf{V}+\boldsymbol{\Sigma}, \mathcal{R})$-algebra.
Hence \mathcal{R} is terminating on all CRS terms.

- Simpler than existing proof methods of termination of higher-order rewriting [van de Pol'96].

Summary

I. Universal Algebra for $\mathrm{CRS}=\boldsymbol{\Sigma}$-monoids
II. Complete characterisations of termination and meta-termination of CRSs
III. Universal Algebra for binding CRSs $=Z+\mathbf{V}+\boldsymbol{\Sigma}$-algebras

- Simpler interpretation for termination proof

Thank you.

