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Abstract. Abstract syntax with variable binding is known to be characterised as
an initial algebra in a presheaf category. This paper extends it to the case of poly-
morphic typed abstract syntax with binding. We consider two variations, second-
order and higher-order polymorphic syntax. The central idea is to apply Fiore’s
initial algebra characterisation of typed abstract syntax with binding repeatedly,
i.e. first to the type structure and secondly to the term structure of polymorphic
system. In this process, we use the Grothendieck construction to combine differ-
ently staged categories of polymorphic contexts.

1 Introduction

It is well-known that first-order abstract syntax is modelled as an initial algebra [GTW76]
in the framework of ordinary universal algebra. Because this algebraic characterisation
cleanly captures various important aspects of syntax, such as structural recursion and in-
duction principles, in terms of algebraic notions, it has been extended to more enriched
abstract syntax: abstract syntax with variable binding [Hof99, FPT99], simply-typed
abstract syntax with variable binding [Fio02, MS03, TP08], and dependently-sorted
abstract syntax [Fio08]. These are uniformly modelled in the framework of categorical
universal algebra in presheaf categories.

The solid algebraic basis of enriched abstract syntax has produced fruitful appli-
cations. The untyped case [FPT99] was applied to characterisations of second-order
abstract syntax with metavariables [Ham04, Fio08], higher-order rewriting [Ham05],
explicit substitutions [GUH06], and the Fusion calculus [Mic08]. The simply-typed
case [Fio02, MS03] was applied to normalisation by evaluation [Fio02], pre-logical
predicates [Kat04], simply-typed higher-order rewriting [Ham07], cyclic sharing tree
structures [Ham10], and second-order equational logic [FH10].

However, an important extension of abstract syntax remains untouched, namely
polymorphic typed abstract syntax.

This paper provides the initial algebra characterisation of polymorphic typed ab-
stract syntax with variable binding in a presheaf category. We consider two variations,
second-order and higher-order polymorphic syntax. The central idea is to repeatedly ap-
ply Fiore’s initial algebra characterisation of typed abstract syntax with binding [Fio02]
twice, i.e. first to the type structure and secondly to the term structure of polymorphic
system. In this process, we use the Grothendieck construction to combine differently
staged categories of polymorphic contexts, which is a key to defining the category of
discourse in our formulation.



This characterisation will be a basis of further fruitful research. It is applicable to
modern functional programming language such as ML and Haskell. Moreover, it can
be a basis of more interesting systems, polymorphic equational logic (along the line
of Fiore’s programme on synthesis of equational logic [Fio09]), polymorphic higher-
order rewriting systems as an extension of untyped [Ham05] and simply-typed [Ham07]
higher-order rewriting systems based on algebraic semantics.

Organisation. This paper is organised as follows. We first review the previous alge-
braic models of abstract syntax with binding in Section 2. We then characterise poly-
morphic syntax by examining the syntax of system F in Section 3. We further charac-
terise higher-order polymorphic syntax by examining the syntax of system Fω in Sec-
tion 4. Finally, in Section 5, we discuss how substitutions on polymorphic syntax can
be modelled.

2 Background

2.1 Algebras in SetF for Abstract Syntax with Binding

Firstly, we review algebras in a presheaf category SetF for modelling untyped abstract
syntax with binding by Fiore, Plotkin and Turi [FPT99]. Hofmann [Hof99] also used
the same approach to model higher-order abstract syntax. This is the basis of typed
abstract syntax in next subsection and polymorphic syntax in §3.

The aim is to model syntax involving variable binding. A typical example is the
syntax for untyped λ-terms:

x1, . . . , xn ` xi

x1, . . . , xn ` t x1, . . . , xn ` s
x1, . . . , xn ` t@s

x1, . . . , xn, xn+1 ` t
x1, . . . , xn ` λ(xn+1.t)

This is seen as abstract syntax generated by three constructors, i.e. the variable former,
the application @, and the abstraction λ. The point is that the variable former is a unary
and @ is a binary function symbol, but λ is not merely a unary function symbol. It also
makes the variable xn+1 bound and decreases the context, which is seen as taking the
“internal-level abstraction” (xn+1.t) as the argument of the constructor λ.

In order to model this phenomenon of variable binding generally (not only for λ-
terms), Fiore et al. took the presheaf category SetF to be the universe of discourse, where
F is the category which has finite cardinals n = {1, . . . , n} (n is possibly 0) as objects, and
all functions between them as arrows m→ n. This is the category of object variables by
the method of de Bruijn index/levels (i.e. natural numbers) and their renamings.

Fiore et al. showed that abstract syntax with variable binding is precisely charac-
terised as the initial algebra of suitable endofunctor modelling a signature (e.g. for λ-
terms). More precisely, we need the functor δ : SetF → SetF for context extension
(δA)(n) = A(n + 1) for A ∈ SetF, n ∈ F, and the presheaf V ∈ SetF of variables defined
by V(n) = F(1, n) � {1, . . . , n}. Using these, for example, we can define the endofunctor
Σλ on SetF for abstract syntax of λ-terms by

Σλ(A) = V + A × A + δA



where each summand corresponds to the arity of variable former, @ and λ symbols.
Then we use ordinary notion of functor-algebras in SetF. Generally, an endofunctor Σ
on SetF defined using +,×, δ is called signature functor, and a Σ-algebra is a pair (A, α)
consisting of a presheaf A and a map α : ΣA → A, called an algebra structure. A
homomorphism of Σ-algebras is a map φ : (A, α)→ (B, β) such that φ ◦ α = β ◦ Σφ.

The initial Σλ-algebra (Λ, in) exists and can be constructed by the method in [SP82].
It can be expressed as the presheaf Λ(n) = {t | x1, . . . , xn ` t}/=α of all terms, where
the algebra structure in : ΣλΛ→ Λ consists of constructors of λ-terms, i.e. the variable
former, @, and λ.

This process is generic with respect to arbitrary signature functor Σ, hence an initial
Σ-algebra in SetF models abstract syntax with variable binding.

2.2 Algebras in (SetF↓U)U for Typed Abstract Syntax with Binding

Algebras in SetF lack the treatment of type restrictions on syntax. A typical example of
typed abstract syntax with binding is the syntax for simply-typed λ-terms:

x : τ ∈ Γ
Γ ` x : τ

Γ ` t : σ⇒τ Γ ` s : σ
Γ ` t@s : τ

Γ, x : σ ` t : τ
Γ ` λ(x : σ.t) : σ⇒τ

To model this syntax, we need to model typed contexts Γ = {x1 : τ1, · · · , n : τn}.
For this, instead of the category F, Fiore [Fio02], and Miculan and Scagnetto [MS03]

took the comma category1 F↓U for the index category. Now U is the set containing all
type names used in syntax. It is similar to a universe used in Martin-Löf type theory
(i.e. the set U of all codes of small sets (= types)), hence we call U type universe here-
after. In the case of simply typed λ-calculus, we take U to be the set of all simple types
generated by base types. The presheaf category (SetF↓U)U is now our working category.

The intention of the use of (SetF↓U)U is that the inner index F↓U models contexts,
and the outer index U models the target types of judgments. The category F↓U has
objects Γ : n → U, which are seen as contexts {1 : τ1, · · · , n : τn}, and arrows ρ : Γ →
Γ′, which are functions ρ : n→ n′ such that Γ = Γ′ ◦ ρ, i.e. renaming between Γ and Γ′.
The coproduct is Γ,Γ′ defined by [Γ,Γ′] : n + n′ → U.

All constructions used in the case of SetF are smoothly extended to the case of
(SetF↓U)U , which makes modelling typed syntax possible. The context extension δτ :
SetF↓U → SetF↓U by a variable of type τ is defined by (δτA)(Γ) = A(Γ, τ). The presheaf
V ∈ (SetF↓U)U of variables is defined by the Yoneda embedding Vτ = F↓U(〈τ〉,−),
where 〈τ〉 : 1 → U maps 1 7→ τ ∈ U. Hence Vτ(Γ) � {x | x : τ ∈ Γ}, i.e. the set of
variables of a certain type τ taken from a context Γ.

For example, the signature functor Σ~λ : (SetF↓U)U → (SetF↓U)U for abstract syntax
of simply-typed λ-terms can be defined by

(Σ~λA)τ = Vτ +
∐
τ′∈U

(Aτ′⇒τ × Aτ′ ) +
∐

τ1,τ2∈U
(τ ≡ τ1⇒τ2) × (δτ1 Aτ2 )

1 In the rigorous notation of comma category, (F↓U) should be written as (JF ↓ U), where
JF : F→ Set is the inclusion functor.



Here the binary operator ’≡’ on types gives a set defined by (τ ≡ τ′) , 1 (the one
point set) if τ = τ′, (τ ≡ τ′) , 0 (the empty set) if τ , τ′. This style using ’≡’ to
define a signature functor can be found in [MA09]. Throughout this paper, we use this
’≡’ operator. The initial Σ~λ-algebra (Λ→, in) in (SetF↓U)U exists and can be constructed
[SP82] as the presheaf of all simply-typed λ-terms

(Λ→)τ(Γ) = {t | Γ ` t : τ}/ =α

with algebra structure giving constructors of simply-typed λ terms.
This process is again generic with respect to arbitrary signature functor Σ, hence

an initial Σ-algebra in (SetF↓U)U models arbitrary typed abstract syntax with variable
binding.

Remark. These works do not intend to directly give semantics of λ-calculi. The initial
algebras Λ and Λ→ are not models of untyped and typed λ-calculi respectively, because
they do not validate the β-axioms. They are the initial models of abstract syntax of λ-
calculi. Similarly, we do not intend to give models of polymorphic λ-calculi, system F
and Fω in this paper. We give algebraic models of abstract syntax of types and terms.

Convention on α-equivalence. In this paper, hereafter we use the method of de Bruijn
levels [dB72] for representing bound and free variables in a term (and a type, a judg-
ment, etc.). However, keeping de Bruijn level notation strictly (as in [Ham04, Ham05,
Ham07]) is sometimes clumsy and hides the essence. Hence, in this paper, at the level
of text, we use the usual named notation for terms to avoid clutter. We assume that
these actually denote (or are automatically normalised to) de Bruijn level normal forms.
For example, when we write λx.λy.yx, it actually means λ1.λ2.21. Another example is
α1, . . . , αn ` ∀αn+1. τ to mean 1, . . . , n ` ∀(n + 1. τ). Hence we will drop the explicit
quotienting “/=α” by the α-equivalence in defining a term set hereafter. De Bruijn level
notion is different from more well-known de Bruijn index notation, and levels are the
reverse numbering of variables. See [FPT99] for illustrations of de Bruijn level notation.

3 Second-Order Polymorphic Abstract Syntax

We extend the treatment reviewed in the previous section to the case of second-order
polymorphic abstract syntax with variable binding. The leading example of such a syn-
tax is the abstract syntax for Girard and Reynolds’ system F. Hence we review its defi-
nition.

3.1 System F

Types
τ ::= α | b | τ1⇒τ2 | ∀α.τ

where α ranges over type variables, and b ranges over base types.



Well-formed types 1 ≤ i ≤ n
α1, . . . , αn ` αi α1, . . . , αn ` b

α1, . . . , αn ` σ α1, . . . , αn ` τ
α1, . . . , αn ` σ⇒τ

α1, . . . , αn, αn+1 ` τ
α1, . . . , αn ` ∀αn+1. τ

Well-typed terms

x : τ ∈ Γ
Ξ | Γ ` x : τ

Ξ | Γ, x : σ ` t : τ
Ξ | Γ ` λx : σ. t : σ⇒τ

Ξ | Γ ` t : σ⇒τ Ξ | Γ ` s : σ
Ξ | Γ ` t s : τ

Notes
Ξ, α | Γ ` t : τ

Ξ | Γ ` Λα. t : ∀α. τ
Ξ | Γ ` t : ∀α. τ Ξ ` σ
Ξ | Γ ` tσ : τ[α := σ]

• Ξ | Γ ` t : τ is well-formed if Ξ ` τi for each xi : τi ∈ Γ, and Ξ ` τ.
• Ξ = α1, . . . , αn is a type context, i.e., a sequence of type variables.
• Γ = x1 : τ1, . . . , xk : τk is a term context.

We use the formulation that a type context and a term context are explicitly sepa-
rated in a judgment as Ξ | Γ, where any type variable α appearing in Γ is taken from Ξ.
The substitution operation [− := −] on terms and types is the standard capture-avoiding
substitution.

3.2 Modelling syntax of F

First we concentrate on modelling syntax for system F. We generalise it to arbitrary
polymorphic abstract syntax later.

The basic idea we take is to use algebras in (SetF↓U)U as in §2.2. Now the type
universe U is not merely a set of all types, since types involve type variables and quan-
tification. This means that U must be given by abstract syntax with variable binding.
This point of view was also taken in [AHS96].

We use a two-stage approach to model system F terms. Firstly, we construct the
universe T of all system F types as a presheaf T ∈ SetF by an initial algebra in SetF.
Then we move to another presheaf category Set

∫
G (explained later) defined using T, and

construct an initial algebra for all well-typed terms in it. We proceed by the following
three steps.

(I) Polymorphic types. We follow the method reviewed in §2.1. Let B ∈ SetF be the
constant functor to the set of all base types, and V the presheaf of type variables defined
by V(n) = F(1, n) � {1, . . . , n}. We define the signature functor Fty : SetF → SetF for
system F types by

Fty(A) = V + B + A × A + δA.

Each summand corresponds to the arity of type variable, base type, arrow type, and
universal type. An initial Fty-algebra exists and can be constructed. We define T ∈ SetF
by the initial Fty-algebra (T, in) described as the presheaf of all well-formed types:

T(n) = {τ | α1, . . . , αn ` τ}.



The arrow part T(ρ) is a renaming action on types using ρ defined by structural recursion
[FPT99], i.e., T(ρ)(τ) renames each type variable in a type τ by ρ. The algebra structure
in : Fty(T)→ T consists of constructors of system F types

tvar : V→ T base : B→ T arrow : T × T→ T forall : δT→ T.

(II) Contexts. In order to model terms, next we need to choose a presheaf category on
some index category using T. We basically follow the style to use (SetF↓U)U ' Set(F↓U)×U

for modelling terms as in §2.2. So we need to choose a suitable type universe U. Now
let’s try to choose the disjoint union: U =

∐
n∈N T(n). But this is imprecise, because

in this attempt Set(F↓∐n∈N T(n))×∐n∈N T(n), the index n in the left sum on the index category
does not synchronize with the index n in the right sum (since each n is locally bound by
each sum). These must be equal because

n | Γ ` t : τ is well-formed ⇔ for every τi in Γ, n ` τi and n ` τ.

Another attempt to use Set
∐

n∈N(F↓T(n)×T(n)) is again insufficient because this does not
model renaming between two terms in different type contexts n and n′.

The right way to combine all of these T(n) for the index category is the Grothendieck
construction. Before going to it, we need to state the following.

Definition 1. (Categories of context-with-types) Let n ∈ N. We use a comma cate-
gory F↓ (T(n)), where T(n) is a set. We also regard T(n) as a discrete category. Then we
take the product: Category F↓ (T(n)) × T(n)

• objects (Γ, τ) where Γ ∈ F↓ (T(n)), τ ∈ T(n)
• arrows π : (Γ, τ)→ (∆, τ) given by a renaming π : Γ→ ∆ in F↓ (T(n)).

We use the Grothendieck construction to glue all categories of context-with-types
together. We recall the construction [Gro70].

Definition 2. (Grothendieck) Given a functor F : Cop → Cat, the Grothendieck con-
struction of F is a category

∫
F with objects (I, A) where I ∈ C and A ∈ F (I), and

arrows (u, γ) : (I, A)→ (J, B) where u : J → I in Cop and γ : F (u)(A)→ B in F (J).

We now define a functor G : Fop → Cat by

G(x) = F↓ (T(x)) × T(x)
G( f ) = F↓ (T( f )) × T( f ) for f : x→ y in F

The Grothendieck construction
∫

G has

• objects (n | Γ ` τ), where n ∈ F, Γ ∈ F↓ (T(n)), τ ∈ T(n),
• arrows (ρ, π) : (m | Γ ` τ)→ (n | ∆ ` σ),

where ρ : m→ n in F such that T(ρ)(τ) = σ, and
π : (F↓Tρ) (Γ)→ ∆ in F↓ (T(n)).



We now explain why objects and arrows are described as above and their syntactic
meaning. If we follow the above definition strictly, an object of

∫
G should be (n, (Γ, τ)),

where n ∈ F and (Γ, τ) ∈ F↓ (T(n)) × T(n). We merely use another notation (n | Γ ` τ)
for this triple.

Meaning of arrows. For arrows, the above description is obtained by expanding the
definition. An arrow (ρ, π) : (m | Γ ` τ)→ (n | ∆ ` σ) consists of a renaming ρ : m→
n between type contexts, and a renaming π : (F↓Tρ) (Γ)→ ∆ between term contexts.

Moreover, an arrow (ρ, π) in
∫

G can be understood as renaming type and term
variables between two judgments having different contexts and result types. To discuss
it, we first define the indexed set T of all well-typed terms by

T(Ξ | Γ ` τ) = {t | (Ξ | Γ ` t : τ) is derivable}.

Let ρ]t denote renaming each type variable in a term t by ρ, and π]t denotes renaming
each term variable in a term t by π. Then, we have an admissible rule for well-typedness
of renamed term:

m | Γ ` t : τ
n | ∆ ` π]ρ](t) : T(ρ)(τ)

by applying (ρ, π) in
∫

G

This process defines the arrow part of T being a presheaf in Set
∫

G

T(ρ, π) : T(m | Γ ` τ)→ T(n | ∆ ` σ); t 7→ π]ρ](t)

where T(ρ)(τ) = σ. When ρ is the identity idn : n→ n, then T(idn, π) : T(n | Γ ` τ)→
T(n | Γ′ ` τ) is the usual renaming on Γ.

Hence, the Grothendieck construction provides the category of context-with-types
and renamings in a mathematically uniform way.

(III) Terms. Now our working category is Set
∫

G. As we have seen, system F terms
form a presheaf T in Set

∫
G. The presheaf V ∈ Set

∫
G of variables is defined by

V(n | Γ ` τ) = (F↓T(n))(〈τ〉,Γ) � {x | x : τ ∈ Γ}
V(ρ, π) = π ◦ −.

We define the signature functor F : Set
∫

G → Set
∫

G for system F terms by

F(A)(n | Γ ` τ) = V(n | Γ ` τ)
+
∐

τ1,τ2∈T(n)
(τ ≡ τ1⇒τ2) × A(n | Γ, τ1 ` τ2)

+
∐
σ∈T(n)

A(n | Γ ` σ⇒τ) × A(n | Γ ` σ)

+
∐

τ′∈T(n+1)
(τ ≡ ∀(α.τ′)) × A(n + 1 | wk(Γ) ` τ′)

+
∐
σ∈T(n)
τ′∈T(n+1)

(τ ≡ τ′[α := σ]) × A(n | Γ ` ∀(α.τ′)).



Each summand corresponds to the arity of variable, abstraction, application, type ab-
straction, and type application. The weakening wk : F ↓ T(n) → F ↓ T(n + 1) maps a
context under n to the same context but under a weakened n+1. The use of “≡” operator
is inessential to define the signature functor. It is merely a shortcut way of describing
the definition by case analyse, see §3.3 for the general case.

Theorem 3. T forms an initial F-algebra.

Proof. An initial F-algebra is constructed by the colimit of the ω-chain 0 → F0 →
F20→ · · · [SP82]. These construction steps correspond to derivations of terms by term
forming rules, hence their union T is the colimit. The algebra structure in : FT → T
of the initial algebra is obtained by one-step inference of the term forming rules, i.e.,
given by the following operations

varτ : V(n | Γ ` τ) → T(n | Γ ` τ) ; x 7→ x
absσ,τ : T(n | Γ, σ ` τ) → T(n | Γ ` σ⇒τ) ; t 7→ λx.t
appσ,τ : T(n | Γ ` σ⇒τ)

× T(n | Γ ` σ)) → T(n | Γ ` τ) ; s, t 7→ s t
tabsτ′ : T(n + 1 | wk(Γ) ` τ′)→ T(n | Γ ` ∀(α.τ′)) ; t 7→ Λα.t
tappσ,τ′ : T(n | Γ ` ∀(α.τ′)) → T(n | Γ ` τ′[α := σ]) ; t 7→ tσ

where n ∈ N, σ, τ ∈ T(n), τ′ ∈ T(n + 1), and α is actually a de Bruijn level n + 1. ut

3.3 General signature

Not only for system F, we seek a general framework for polymorphic abstract syntax.
Generalising the case of system F, we arrive at the following definition.

Definition 4. A polymorphic signature Σ = (Σty,Σtm) consists of the following data.

• Σty for types is a binding signature [Acz78, FPT99], i.e. a set of type formers with
an arity function a : Σty → N∗ (NB. ’*’ denotes the Kleene closure). A type for-
mer of arity 〈n1, . . . , nl〉, denoted by o : 〈n1, . . . , nl〉, has l arguments and binds ni

variables in the i-th argument (1 ≤ i ≤ l).

• Let T ∈ SetF be the free Σty-algebra overV, represented by term syntax in de Bruijn
levels [FPT99, Ham04].

• Σtm for terms is a set of function symbols with arities. This is denoted by

f : 〈k1〉(~σ1)τ1, . . . , 〈kl〉(~σl)τl → τ

where n ∈ N, ki ∈ N, ~σi ∈ T(n + ki)∗, τi ∈ T(n + ki)∗, τ ∈ T(n), has l arguments, and
binds ki type variables and |~σi| variables in the i-th argument (1 ≤ i ≤ l). In case of
ki = 0 or |~σi| = 0, each part is omitted. Here, | − | denotes the length of a sequence.

Example 5. The polymorphic signature ΣF = (Σty
F ,Σ

tm
F ) for system F can be given as

follows: Σty
F = {b : 〈0〉,⇒: 〈0, 0〉,∀ : 〈1〉}, and Σtm

F is

absσ,τ : (σ)τ → σ⇒τ appσ,τ : σ⇒τ, σ→ τ
tabsτ′ : 〈1〉τ′ → ∀(α.τ′) tappσ,τ′ : ∀(α.τ′) → τ′[α := σ]



generated by all n ∈ N, σ, τ ∈ T(n), τ′ ∈ T(n + 1), and α should be regarded as a de
Bruijn level n + 1.

Example 6. If we want to add the let-binding construct, Σtm has the function symbol
let : σ, (σ)τ→ τ, where σ, τ ∈ T(n).

To a polymorphic signature Σ, we associate the signature functor Σ : Set
∫

G →
Set
∫

G given by

ΣA(n | Γ ` τ) =
∐

f :〈k1〉(~σ1)τ1,...,〈kl〉(~σl)τl→τ∈Σtm

∏
1≤i≤l

A(n + ki | Γ, ~σi ` τi).

3.4 General syntax rules

Using a polymorphic signature Σ, we can construct polymorphic terms syntactically and
generally. The following construction rules are extracted from the semantic structure we
have obtained so far.

Well-formed types
1 ≤ i ≤ n

α1, . . . , αn ` αi

Ξ, ~α1 ` τ1 . . . Ξ, ~αl ` τl

Ξ ` o( ~α1.τ1, . . . , ~αl.τlτ)

where o : 〈n1, . . . , nl〉 ∈ Σty, |~αi| = ni.
Well-typed terms

x : τ ∈ Γ
Ξ | Γ ` x : τ

Ξ, ~α1 | Γ, ~x1 : ~σ1 ` t1 : τ1 · · · Ξ, ~αl | Γ, ~xl : ~σl ` tl : τl

Ξ | Γ ` f (~x1.t1, . . . , ~xl.tl) : τ

where f : 〈k1〉(~σ1)τ1, . . . , 〈kl〉(~σl)τl → τ ∈ Σtm, |~αi| = ki.

We define TV(Ξ | Γ ` τ) , {t | (Ξ | Γ ` t : τ) is derivable}, which we call polymor-
phic abstract syntax.

Theorem 7. Given a polymorphic signature Σ, TV forms a free Σ-algebra over V.

Proof. Similarly to Thm. 3. Notice that a free Σ-algebra over V is an initial V + Σ-
algebra. ut

4 Higher-Order Polymorphic Abstract Syntax

We extend the previous algebraic characterisation to the case of higher-order polymor-
phic abstract syntax with variable binding. The leading example of such a syntax is the
abstract syntax for Girard’s system Fω. Hence we review its definition.



4.1 System Fω

Kinds and types κ ::= ∗ | κ1⇒κ2
τ ::= α | b | τ1⇒τ2 | ∀α : κ.τ | λα : κ.τ | τ1τ2

Well-kinded types

α : κ ∈ Ξ
Ξ ` α : κ Ξ ` b : κ

Ξ, α : κ′ ` τ : κ
Ξ ` λα : κ′. τ : κ′⇒κ

Ξ ` σ : ∗ Ξ ` τ : ∗
Ξ ` σ⇒τ : ∗

Ξ, α : κ ` τ : ∗
Ξ ` ∀α : κ. τ : ∗

Ξ ` σ : κ′⇒κ Ξ ` τ : κ′

Ξ ` στ : κ

Well-typed terms

x : τ ∈ Γ
Ξ | Γ ` x : τ

Ξ | Γ, x : σ ` t : τ
Ξ | Γ ` λx : τ. t : σ⇒τ

Ξ | Γ ` t : σ⇒τ Ξ | Γ ` s : σ
Ξ | Γ ` t s : τ

Notes
Ξ, α : κ | Γ ` t : τ

Ξ | Γ ` Λα : κ. t : ∀α : κ. τ
Ξ | Γ ` t : ∀α : κ. τ Ξ ` σ : κ
Ξ | Γ ` tσ : τ[α := σ]

• Ξ | Γ ` t : τ is well-formed if Ξ ` τi : κi for each xi : τi ∈ Γ and Ξ ` τ : ∗.
• Ξ = α1 : κ1, . . . , αn : κn is a sequence of (type variable,kind)-pairs.

4.2 Modelling syntax of Fω

First we concentrate on modelling abstract syntax for system Fω terms. We generalise
it to arbitrary higher-order polymorphic abstract syntax later.

The basic idea we take is again to follow the style using algebras in (SetF↓U)U . In the
case of system F, U was given by untyped abstract syntax with variable binding since
types contain universal quantification. In system Fω, a type has a kind. This means that
U must be given by typed (= used for kinding) abstract syntax with variable binding.

We use again a two-stage approach to model system Fω terms, but the working cate-
gories are different from the previous case. LetK be the set of all kinds (and considered
as a discrete category). Firstly, we construct the universe T of all system Fω types as a
presheaf T ∈ (SetF↓K )K by an initial algebra in the category (SetF↓K )K . Then we move
to another presheaf category Set

∫
H (explained later) defined using T, and construct an

initial algebra for all well-typed Fω terms in it.

(I) Kinded types. Let Bκ ∈ SetF↓K be the constant functor to the set all base types of
kind κ,V ∈ (SetF↓K )K the presheaf of kinded type variables defined byVκ = F↓K(κ,−).
We define the signature functor Fty

ω : (SetF↓K )K → (SetF↓K )K for system Fω types by

Fty
ω (A)κ = Vκ + Bκ + (κ ≡ ∗)× (A∗×A∗ + δκA∗)

+
∐

κ1,κ2∈K
((κ ≡ κ1⇒κ2) × δκ1 Aκ2 ) +

∐
κ′∈K

(Aκ′⇒κ × Aκ′).

Each summand corresponds to the arity of type variable, base type, (arrow type and
universal type), type-level λ, and type-level application.



An initial Fty
ω -algebra exists as in §2.2. We define T ∈ (SetF↓K )K by an initial Fty

ω -
algebra (T, in) described as the presheaf of all well-kinded types2

Tκ(α1 : κ1, . . . , αn : κn) = {τ | α1 : κ1, . . . , αn : κn ` τ : κ},

with algebra structure consisting of constructors

tvarκ : Vκ → Tκ baseκ : Bκ → Tκ tyabsκ1,κ2: δκ1Tκ2→ Tκ1⇒κ2
arrow : T∗ × T∗ → T∗ forallκ : δκT∗ → T∗ tyappκ′,κ: Tκ′⇒κ × Tκ′ → Tκ.

These six arrows of SetF↓K correspond to the six rules of Well-kinded types of Fω.

(II) Contexts. Let Ξ ∈ F↓K . We now take F↓ (TκΞ) to be the category of contexts. As
we have seen, Tκ(Ξ) is the set of all types of kind κ under Ξ = α1 : κ1, . . . , αl : κl. An
object Γ ∈ F↓ (TκΞ) is a map such that

F 3 n 3 a variable xi
Γ- τi ∈ Tκ(Ξ) i.e. Ξ ` τi : κ.

Hence, Γ expresses a context x1 : τ1, . . . , xn : τn, and all types τi are of kind κ. The set
Tκ(Ξ) is also regarded as a discrete category.

(III) Terms. Again, we use the Grothendieck construction to glue all categories of
context-with-types together. We define a functor H : (F↓K × K)op → Cat by

H(Ξ, κ) = F↓ (TκΞ) × Tκ(Ξ)
H(ρ, idκ) = F↓ (Tκρ) × Tκ(ρ) for ρ : Ξ→ Ξ′ in F↓K .

The Grothendieck construction
∫

H has

• objects (Ξ | Γ ` τ : κ), where Ξ ∈ F↓K , κ ∈ K , Γ ∈ F↓ (TκΞ), τ ∈ Tκ(Ξ),
• arrows (ρ, π) : (Θ | Γ ` τ : κ)→ (Ξ | ∆ ` σ : κ),

where ρ : Θ→ Ξ in F↓K such that Tκ(ρ)(τ) = σ, and
π : (F↓Tκρ)(Γ)→ ∆ in F↓ (TκΞ).

Now our working category is Set
∫

H. We define Tω ∈ Set
∫

H of all well-typed terms by

Tω(Ξ | Γ ` τ : ∗) = {t | (Ξ | Γ ` t : τ) is derivable}
Tω(Ξ | Γ ` τ : κ) = ∅ if κ , ∗

The second clause is due to that there are no terms of higher-kinded types in Fω. The
arrow part is defined similarly to the case of system F.

The presheaf V ∈ Set
∫

H of term variables is defined by

V(Ξ | Γ ` τ : κ) = (F↓ (TκΞ))(〈τ〉,Γ) � {x | x : τ ∈ Γ}
V(ρ, π) = π ◦ −.

2 Usually, system Fω types are identified modulo type-level β-conversion. Since we only focus
on abstract syntax in this paper, we do not treat this process here. This will be uniformly treated
within general polymorphic equational logic (cf. the discussion in §5).



We define the signature functor Fω : Set
∫

H → Set
∫

H for system Fω terms by

Fω(A)(Ξ | Γ ` τ : ∗) = V(Ξ | Γ ` τ : ∗)
+

∐
τ1,τ2∈T∗(Ξ)

(τ ≡ τ1⇒τ2) × A(Ξ | Γ, τ1 ` τ2 : ∗)

+
∐

σ∈T∗(Ξ)
(A(Ξ | Γ ` σ⇒τ : ∗) × A(Ξ | Γ ` σ : ∗))

+
∐

τ′∈T∗(Ξ, α:κ)
(τ ≡ ∀(α : κ.τ′)) × A(Ξ, α : κ | wkα:κ(Γ) ` τ′ : ∗)

+
∐

σ∈T∗(Ξ)
τ′∈T∗(Ξ, α:κ)

(τ ≡ τ′[α := σ]) × A(Ξ | Γ ` ∀(α : κ.τ′) : ∗).

The weakening wkα:κ : F ↓ T(Ξ) → F ↓ T(Ξ, α : κ) maps a term context under a type
context Ξ to the same term context but under a weakened one (Ξ, α : κ).

Theorem 8. Tω forms an initial Fω-algebra.

4.3 General signature

Generalising the case of system Fω, we arrive at the following definition.

Definition 9. A higher-order polymorphic signature Σ = (K ,Σty,Σtm) consists of the
following data.

• K is the set of all kinds.

• Σty for types is a second-order signature [FH10], i.e. a set of type formers with an
arity function a : Σty → (K∗ × K)∗ × K . A type former with arity, denoted by

o : (~σ1)τ1, . . . , (~σl)τl → τ
has l arguments, and binds |~σi| variables of types ~σi in the i-th argument.

• Let T ∈ (SetF↓K )K be the free Σty-algebra over V, represented by term syntax. This
is the presheaf of all types.

• Σtm for terms is a set of function symbols with arities. This is denoted by

f : 〈Θ1〉(~σ1)τ1 : κ1, . . . , 〈Θl〉(~σl)τl : κl → τ : κ

where Ξ,Θi ∈ F↓K , ~σi ∈ Tκi (Ξ,Θi)∗, τi ∈ Tκi (Ξ,Θi)∗, τ ∈ Tκ(Ξ), has l arguments,
and binds |Θi| type variables (of kind κi) and |~σi| variables (of types ~σi that have the
same kind κi) in the i-th argument (1 ≤ i ≤ l).

Example 10. The higher-order polymorphic signature ΣFω = (K ,Σty
Fω
,Σtm

Fω
) for system

Fω is as follows: K = {∗} ∪ {κ1⇒κ1 | κ1, κ2 ∈ K}, Σty
Fω

is

b : ∗ ⇒: ∗, ∗ → ∗ ∀κ : (κ)∗ → ∗ λκ,κ′ : (κ′)κ → κ′⇒κ @κ,κ′ : κ′⇒κ, κ′ → κ
generated by all κ, κ′ ∈ K , and Σtm

Fω
is

absσ,τ : (σ)τ : ∗ → σ⇒τ : ∗ appσ,τ : σ⇒τ : ∗, σ : ∗ → τ : ∗
tabsτ′,κ : 〈κ〉τ′ : ∗ → ∀κ(α.τ′) : ∗ tappσ,τ′ : ∀κ(α.τ′) : ∗ → τ′[α := σ] : ∗

generated by all κ ∈ K , Ξ ∈ F↓K , κ′ ∈ K , σ, τ ∈ Tκ′(Ξ), τ′ ∈ Tκ′ (Ξ, α).



Example 11. The higher-order polymorphic signature for system F is given by ΣF =

({∗},Σty
Fω
− {λ∗,∗,@∗,∗}),Σtm

Fω
).

To a higher-order polymorphic signature Σ, we associate the signature functor Σ :
Set
∫

H → Set
∫

H given by

ΣA(Ξ | Γ ` τ : κ) =
∐

f :〈Θ1〉(~σ1)τ1:κ1,...→τ:κ∈Σtm

∏
1≤i≤l

A(Ξ,Θi | Γ, ~σi ` τi : κi).

4.4 General syntax rules

If Ξ ` τi : κ for all xi : τi ∈ Γ, and Ξ ` τ : κ, then a term judgment Ξ | Γ ` t : τ : κ is
well-formed.

Well-kinded types

1 ≤ i ≤ n
α1 : κ1, . . . , αn : κn ` αi : κi

Ξ, ~α1 : ~κ′1 ` τ1 : κ1 · · · Ξ, ~αl : ~κ′l ` τl : κl
Ξ ` o( ~α1.τ1, . . . , ~αl.τlτ) : κ

where o : (~κ′1)κ1, . . . , (~κ
′
l)κl → κ ∈ Σty.

Well-typed terms x : τ ∈ Γ
Ξ | Γ ` x : τ : κ

Ξ,Θ1 | Γ, ~x1 : ~τ1 ` t1 : τ1 : κ1 · · · Ξ,Θl | Γ, ~xl : ~τl ` tl : τl : κl
Ξ | Γ ` f (~x1.t1, . . . , ~xl.tl) : τ : κ

where f : 〈Θ1〉(~σ1)τ1 : κ1, . . . , 〈Θl〉(~σl)τl : κl → τ : κ ∈ Σtm.

We define TV(Ξ | Γ ` τ : κ) , {t | (Ξ | Γ ` t : τ : κ) is derivable}, which we call
higher-order polymorphic abstract syntax.

Theorem 12. Given a higher-order polymorphic signature Σ, TV forms a free Σ-algebra
over V.

5 On Substitutions and Future Work

In this paper, we have focused on abstract syntax. In this final section, we briefly con-
sider the equational axioms of system F and Fω, and how we can express them in our
framework. These remarks pertain to future work on seeking a general equational logic
on polymorphic terms.

System F has the axioms:

(β) Ξ | Γ ` (λx : σ. t) s = t[x := s] : τ
(type app.) Ξ | Γ ` (Λα.t)σ = t[α := σ] : τ[α := σ]



The terms of the left-hand sides of equations are just elements of the presheaf T of
terms. In the right-hand sides and in types, various substitutions are used. We can model
these as follows.

Substitution on types: τ[α := σ]. The category SetF has so-called a substitution
monoidal structure [FPT99] (SetF, •,V), where the monoidal product is given by a co-
end (A • B)(n) =

∫ m∈F
A(m) × B(n)m. The presheaf T of system F types is a monoid in

(SetF, •,V), and its multiplication µT : T • T→ T models the substitution operation on
types.

Substitution on terms: t[x := s]. Since both terms t and s are under the same type
context Ξ, it suffices to consider the substitution monoidal structure in (SetF↓(T(n)))T(n)

for each n = |Ξ| ∈ N. This case is covered by the substitution structure explored in
[MS03, FH10], i.e. (A • B)τ(Γ) =

∫ ∆∈F↓(T(n))
Aτ(∆) × ∏1≤i≤|∆| B∆(i)(Γ). The presheaf

T(n | − ` −) ∈ (SetF↓(T(n)))T(n) of system F terms in a fixed type context n is a monoid
in it, and its multiplication µT models the substitution operation on terms.

Substitution of a type for a type variable in a term: t[α := σ]. It can be directly
modelled by a map tsubσ,n : T(n + 1 | Γ ` τ) → T(n | Γ′ ` τ[n + 1 := σ]) defined by
structural recursion on term that replaces each n + 1 in a term with σ ∈ T(n) using
µT, where n + 1 is the de Bruijn level of the type variable α. The context Γ′ is the one
obtained by replacing all n + 1 with σ in Γ.

Substitution on kinded types: τ[α := σ]. System Fω has additionally the axiom

(type β) Ξ | Γ ` (λα : κ. τ)σ = τ[α := σ] : κ′

The substitution in the right-hand side of the equation is modelled using the substitution
monoidal structure in (SetF↓K )K again following [MS03, FH10]. The presheaf T of Fω
types is a monoid in ((SetF↓K )K , •,V), and its multiplication µT : T • T→ T models the
substitution operation on kinded types.

On the use of metavariables. When formalising an axiom, e.g. (β), there are actually
two different views:

(1) (β) expresses infinitary many axioms generated by all concrete terms s, t.
(2) (β) should be regarded as a single axiom, where each letter “s” and “t” is the symbol

of a metavariable denoting a concrete term.

Throughout this paper, we have taken the view (1). The view (2) was explored in
[Ham04, Ham05, Fio08, FH10]. The presentation of axioms using metavariables is cer-
tainly more economical than (1), but technically more involved. This paper focuses
on polymorphism in abstract syntax, so, for clarity, we did not go into the issue on
metavariables. This should be explored in a future work.
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