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Dependently-typed Programming, Now!

(i) Agda [Chalmers’'07-,AIST]

(ii) Coq with program/equations tactic [Sozeau ICFP'07,ITP'10]
(iii) Epigram [McBride,McKinna '04-]

(iv) Haskell with type classes/GADTs [McBride JFP'02, Hinze'03]
Origin

> Dependently Typed Functional Programs and T heir Proofs
Conor McBride, Ph.D thesis, University of Edinburgh, 1999.



How to Use Dependent Types
In Programming?

data Nat : Set where

zero : Nat

suc : Nat -> Nat
data Vec : Nat -> Set where —-— an inductive family
[] : Vec zero

_::_ : {n : Nat} -> (a : A) -> Vec n -> Vec (suc n)

Vec - - - type of length-indexed lists
: Vec zero
al :: [] : Vec (suc zero)
a2 :: al :: [] : Vec (suc (suc zero))




How to Use Dependent Types
In Programming?

Safe head

head : {n : Nat} -> Vec (suc n) -> A

head (x :: x8) = x

> Never fails



Typical Example: append

_++_ : {m n : Nat} -> Vec m -> Vec n -> Vec (m + n)
[] ++ ys = ys
(x :: x8) ++ ys = x :: (xs ++ ys)

> T he index of result type precisely specifies the resulting list

> Is it always possible?



More Example: filter

Agda

filter : {n : Nat} ->
(Nat -> Bool) -> Vec n -> Vec (7)

filter p []1 = []
filter p (x :: xs) with p x
| False

| True

filter p xs

x :: filter p xs



10
More Example: filter

Agda: first attempt

filter : {n : Nat} ->
(p : Nat -> Bool) -> (xs : Vec n) -> Vec (length (filter p xs))

filter p [] []
filter p (x :: xs) with p x
| False

| True

filter p xs

x :: filter p xs



More Example: filter

Agda: correct code

len—-fi

lter :

{n :

len-filter p []

len-filter p (x ::

filter :
(p :

filter
filter

Nat} -> (Nat
=0
xs) with p x

-> Bool) -> Vec n -> Nat

: Vec n) -> Vec (len-filter p xs)

False = len-filter p xs

True = suc (len-filter p xs)
{n : Nat} ->
Nat -> Bool) -> (xs

p [l =1]

p (x :: xs) with p x

False = filter p xs

True = x :: filter p xs
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More Example: filter

Agda: correct

len-filter : {n :

len-filter p []

len-filter p (x ::

| False =1

code

Nat} -> (Nat
=0
xs) with p x

en-filter p xs

-> Bool) -> Vec n -> Nat

| True = suc (len-filter p xs)

filter : {n : N
(p : Nat ->
filter p [1 = [

filter p (x ::
| False = f
| True =

X o

at} ->
Bool) -> (xs

: Vec n) -> Vec (len-filter p xs)

] » Dependent polymorphism helps

xs) with p x
ilter p xs

filter p xs
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Classification of Polymorphism

Straychey [1967], Reynolds [1983]

Ad-hoc Int X Int Fint Int
Real X Real +Real= Real
) f.StI'n,t
Parametric Int Int X Int - Int
R |R
fStReal
Real Real X Real » Real
Dependent Vec Vec X Vec i Vec

|

Nat NatXNatTNat

“dependency”\
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New Semantics of Inductive Families

1) Simplified version of semantics of
dependently-sorted abstract syntax [Fiore LICS'08]

2) Dependency category S of sorts

3) The category of discourse is

Set”®
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Dependency Category S

data Nat : Set where
zero : Nat
suc : Nat — Nat

data Vec : Nat — Set where
nitl : Vec Zero

cons: (n: Nat) X (a: A) X Vecn — Vec (sucn)

> Dependency category S of sorts — skeletal, DAG

len

N—V

Objects: sorts
Arrows : ‘“sort dependencies”



Semantic Construction of Models

data Nat : Set where
zero : Nat
suc : Nat — Nat

data Vec : Nat — Set where

nil : Vec Zero
cons: (n: Nat) X (a: A) X Vecn — Vec (sucn)

> Functor F : Set® — Set® modelling an inductive family

> Initial F'-algebra
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Why Interesting? — Programming Viewpoint

> The category of discourse Set”

> A natural transformation
f:A— B inSet’
is a family of functions

{fs: As — B, | s € S}

satisfying “naturality” ... polymorphism?
S A, Js - B,
d A(d) B(d)
S, ASI fs’ > BSI
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Sort Dependency in Models

> Term model T € Set®

Tn = {zero} U {suc(n) | n € Ty}
Ty = {nil} U {cons(n,b,y) | n € Ty,b € T,y € T\,
T(len)(y) = n}

> Functoriality of T': S — Set

N - \V4 insS

TN < T in Set
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Sort Dependency in Model
> Term model T € Set®

Tn = {zero} U {suc(n) | n € Tn}
Tv = {nil} U {cons(n,b,y) | n € T\n,b € T,y € Ty,
T(len)(y) = n}

> Functoriality of T': S — Set

len _
N - VvV inS
}T
TN < T in Set
T T (len) v
“length”
0 - | el

suc(n) - | cons(n, a, y) term level dependency
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Dependent Polymorphism

_+H _:Vee(m) X Vee(n) — Vec(m + n) _+ _: Nat — Nat

nil H ys = ys zero—+vyYy =1y
(x:xs) H ys = x : (xs H ys) suc(n) + y = suc(n + y)

V TvXTV—H_ - Ty
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Dependent Polymorphism

_+H _:Vee(m) X Vee(n) — Vec(m + n) _+ _: Nat — Nat
nil H ys = ys zero—+vyYy =1y
(x:xs) H ys = x : (xs H ys) suc(n) + y = suc(n + y)

V T X Ty LS - Ty
len Tlen X Tlen T len
N Thn X T - TN

inS in Set
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Dependent Polymorphism

_+H _:Vee(m) X Vee(n) — Vec(m + n) _+ _: Nat — Nat
nil H ys = ys zero+vyYy =1y
(x :: xs) H ys = x :: (s +H ys) suc(n) +y = suc(n +y
V Tv X Ty LS - Ty,
len Tlen X Tlen T len
N Thn X T - T
4
in S in Set
TXT © .7 insett

Schematic definition
zDby=vy
c(n) By =c(n @ y)

- 1S dependently polymorphic



Conclusion: What types admit this reading?

1. When indices are the ‘'shapes’ of data in a type
(i) Vectors a2 :: (al :: []) : Vec (suc (suc zero))
(ii) “Shape indexed” type of trees [Hamana LMCS'10]
e.g. bin( If(3), If(5) ) : Tree (B(L,L))

2. When indices are calculated by fold

» [ heoretical basis of code reuse
In dependently-typed programming

24



