
1

Dependent Polymorphism

Makoto Hamana

Department of Computer Science,

Gunma University, Japan

http://www.cs.gunma-u.ac.jp/̃ hamana/

2

This Talk

[I] A semantics for dependently-typed programming

[II] A kind of polymorphism from semantics

– dependent polymorphism

3

This Talk

[I] A semantics for dependently-typed programming

[II] A kind of polymorphism from semantics

– dependent polymorphism

4

Dependent typeを

プログラミングで使える時代が

来ました

5

Dependently-typed Programming, Now!

(i) Agda [Chalmers’07-,AIST]

(ii) Coq with program/equations tactic [Sozeau ICFP’07,ITP’10]

(iii) Epigram [McBride,McKinna ’04-]

(iv) Haskell with type classes/GADTs [McBride JFP’02, Hinze’03]

Origin

B Dependently Typed Functional Programs and Their Proofs

Conor McBride, Ph.D thesis, University of Edinburgh, 1999.

6

How to Use Dependent Types
in Programming?

data Nat : Set where

zero : Nat

suc : Nat -> Nat

data Vec : Nat -> Set where -- an inductive family

[] : Vec zero

:: : {n : Nat} -> (a : A) -> Vec n -> Vec (suc n)

Vec · · · type of length-indexed lists

[] : Vec zero

a1 :: [] : Vec (suc zero)

a2 :: a1 :: [] : Vec (suc (suc zero))

7

How to Use Dependent Types
in Programming?

Safe head

head : {n : Nat} -> Vec (suc n) -> A

head (x :: xs) = x

B Never fails

8

Typical Example: append

++ : {m n : Nat} -> Vec m -> Vec n -> Vec (m + n)

[] ++ ys = ys

(x :: xs) ++ ys = x :: (xs ++ ys)

B The index of result type precisely specifies the resulting list

B Is it always possible?

9

More Example: filter

Agda

filter : {n : Nat} ->

(Nat -> Bool) -> Vec n -> Vec (?)

filter p [] = []

filter p (x :: xs) with p x

... | False = filter p xs

... | True = x :: filter p xs

10

More Example: filter

Agda: first attempt

filter : {n : Nat} ->

(p : Nat -> Bool) -> (xs : Vec n) -> Vec (length (filter p xs))

filter p [] = []

filter p (x :: xs) with p x

... | False = filter p xs

... | True = x :: filter p xs

11

More Example: filter

Agda: correct code

len-filter : {n : Nat} -> (Nat -> Bool) -> Vec n -> Nat

len-filter p [] = 0

len-filter p (x :: xs) with p x

... | False = len-filter p xs

... | True = suc (len-filter p xs)

filter : {n : Nat} ->

(p : Nat -> Bool) -> (xs : Vec n) -> Vec (len-filter p xs)

filter p [] = []

filter p (x :: xs) with p x

... | False = filter p xs

... | True = x :: filter p xs

12

More Example: filter

Agda: correct code

len-filter : {n : Nat} -> (Nat -> Bool) -> Vec n -> Nat

len-filter p [] = 0

len-filter p (x :: xs) with p x

... | False = len-filter p xs

... | True = suc (len-filter p xs)

filter : {n : Nat} ->

(p : Nat -> Bool) -> (xs : Vec n) -> Vec (len-filter p xs)

filter p [] = [] I Dependent polymorphism helps

filter p (x :: xs) with p x

... | False = filter p xs

... | True = x :: filter p xs

13

Classification of Polymorphism

Straychey [1967], Reynolds [1983]

Ad-hoc Int × Int
+Int- Int

Real × Real
+Real- Real

Parametric Int Int × Int
fstInt- Int

Real

R
?

6

Real × Real

R × R
?

6

fstReal- Real

R
?

6

Dependent V ec V ec × V ec
++- V ec

Nat

“dependency”
?

Nat × Nat
?

+
- Nat

?

14

This Talk

[I] A semantics for dependently-typed programming

[II] A kind of polymorphism from semantics

15

New Semantics of Inductive Families

1) Simplified version of semantics of

dependently-sorted abstract syntax [Fiore LICS’08]

2) Dependency category S of sorts

3) The category of discourse is

SetS

16

Dependency Category S

data Nat : Set where

zero : Nat

suc : Nat → Nat

data Vec : Nat → Set where

nil : Vec Zero

cons : (n : Nat) × (a : A) × Vec n → Vec (suc n)

B Dependency category S of sorts — skeletal, DAG

N ¾len
V

Objects: sorts

Arrows : “sort dependencies”

17

Semantic Construction of Models

data Nat : Set where

zero : Nat

suc : Nat → Nat

data Vec : Nat → Set where

nil : Vec Zero

cons : (n : Nat) × (a : A) × Vec n → Vec (suc n)

B Functor F : SetS → SetS modelling an inductive family

B Initial F -algebra

18

Why Interesting? – Programming Viewpoint

B The category of discourse SetS

B A natural transformation

f : A → B in SetS

is a family of functions

{fs : As → Bs | s ∈ S}

satisfying “naturality” · · · polymorphism?

s As

fs - Bs

s
′

d
?

As′

A(d)
? fs′

- Bs′

B(d)
?

in S in Set

19

Sort Dependency in Models

B Term model T ∈ SetS

TN = {zero} ∪ {suc(n) | n ∈ TN}

TV = {nil} ∪ {cons(n, b, y) | n ∈ TN, b ∈ TB, y ∈ TV,

T (len)(y) = n}

B Functoriality of T : S → Set

N ¾ len
V in S

TN
¾

T (len)

T
?

TV in Set

20

Sort Dependency in Model

B Term model T ∈ SetS

TN = {zero} ∪ {suc(n) | n ∈ TN}

TV = {nil} ∪ {cons(n, b, y) | n ∈ TN, b ∈ TB, y ∈ TV,

T (len)(y) = n}

B Functoriality of T : S → Set

N ¾ len
V in S

TN
¾

T (len)

T
?

TV in Set

“length”

0 ¾ nil

suc(n) ¾ cons(n, a, y) term level dependency

21

Dependent Polymorphism

++ : V ec(m) × V ec(n) → V ec(m + n) + : Nat → Nat

nil ++ ys = ys zero + y = y

(x : xs) ++ ys = x : (xs ++ ys) suc(n) + y = suc(n + y)

V TV × TV

++ - TV

22

Dependent Polymorphism

++ : V ec(m) × V ec(n) → V ec(m + n) + : Nat → Nat

nil ++ ys = ys zero + y = y

(x : xs) ++ ys = x : (xs ++ ys) suc(n) + y = suc(n + y)

V TV × TV

++ - TV

N

len

?
TN × TN

T len × T len

?

+
- TN

T

?
len

in S in Set

23

Dependent Polymorphism

++ : V ec(m) × V ec(n) → V ec(m + n) + : Nat → Nat

nil ++ ys = ys zero + y = y

(x :: xs) ++ ys = x :: (xs ++ ys) suc(n) + y = suc(n + y)

V TV × TV

++ - TV

N

len

?
TN × TN

T len × T len

?

+
- TN

T

?
len

in S in Set

T × T
⊕ - T in SetS

Schematic definition

z ⊕ y = y

c(n) ⊕ y = c(n ⊕ y)

· · · is dependently polymorphic

24

Conclusion: What types admit this reading?

1. When indices are the “shapes” of data in a type

(i) Vectors a2 :: (a1 :: []) : Vec (suc (suc zero))

(ii) “Shape indexed” type of trees [Hamana LMCS’10]

e.g. bin(lf(3), lf(5)) : Tree (B(L,L))

2. When indices are calculated by fold

I Theoretical basis of code reuse

in dependently-typed programming

