Dependent Polymorphism

Makoto Hamana

Department of Computer Science,
Gunma University, Japan
http://www.cs.gunma-u.ac.jp/~hamana/
[I] A semantics for dependently-typed programming
[II] A kind of polymorphism from semantics

- dependent polymorphism
[I] A semantics for dependently-typed programming
[II] A kind of polymorphism from semantics
- dependent polymorphism

Dependent typeを

> プログラミングで使える時代が来ました

Dependently-typed Programming, Now!

(i) Agda [Chalmers'07-,AIST]
(ii) Coq with program/equations tactic [Sozeau ICFP'07,ITP'10]
(iii) Epigram [McBride,McKinna '04-]
(iv) Haskell with type classes/GADTs [McBride JFP'02, Hinze'03]

Origin
\triangleright Dependently Typed Functional Programs and Their Proofs Conor McBride, Ph.D thesis, University of Edinburgh, 1999.

How to Use Dependent Types in Programming?

```
data Nat : Set where
    zero : Nat
    suc : Nat -> Nat
data Vec : Nat -> Set where -- an inductive family
    [] : Vec zero
    _::_ : {n:Nat} -> (a : A) >> Vec n -> Vec (suc n)
```

Vec... type of length-indexed lists

```
    [] : Vec zero
    a1 :: [] : Vec (suc zero)
a2 :: a1 :: [] : Vec (suc (suc zero))
```


How to Use Dependent Types in Programming?

Safe head

```
head : {n : Nat} -> Vec (suc n) -> A
head (x :: xs) = x
```

\triangleright Never fails

Typical Example: append

$$
\begin{aligned}
& \mathbf{Z}^{++}:\{\mathrm{m} \mathrm{n} \mathrm{:} \mathrm{Nat}\} \text {-> Vec } \mathrm{m} \rightarrow \text { Vec } \mathrm{n} \rightarrow \text { Vec }(\mathrm{m}+\mathrm{n}) \\
& {[] \quad++ \text { ys }=\mathrm{ys}} \\
& (\mathrm{x}:: \mathrm{xs}) \quad++ \text { ys }=\mathrm{x}::(\mathrm{xs}++\mathrm{ys})
\end{aligned}
$$

\triangleright The index of result type precisely specifies the resulting list \triangleright Is it always possible?

More Example: filter

Agda
filter : $\{\mathrm{n}:$ Nat $\}->$ (Nat -> Bool) -> Vec n \rightarrow Vec (?)
filter p [] = []
filter p (x : : xs) with p x
... | False = filter p xs
... | True = x :: filter p xs

More Example: filter

Agda: first attempt
filter : \{n : Nat $\}$->
(p : Nat -> Bool) -> (xs : Vec n) -> Vec (length (filter p xs))
filter p [] = []
filter p (x : : xs) with p x
... | False = filter p xs
... | True = x :: filter p xs

More Example: filter

Ada: correct code

```
len-filter : {n : Nat} -> (Nat -> Bool) -> Vec n -> Nat
len-filter p [] = 0
len-filter p (x :: xs) with p x
... | False = len-filter p xs
... | True = suc (len-filter p xs)
```

filter : \{n : Nat $\}$->
(p : Nat \rightarrow Dol) $->$ (xs : Vec n) \rightarrow Dec (len-filter p xs)
filter p [] = []
filter p (x : : xs) with p x
... | False = filter p xs
... | True = x : : filter p xs

More Example: filter

Agda: correct code

```
len-filter : {n : Nat} -> (Nat -> Bool) -> Vec n -> Nat
len-filter p [] = 0
len-filter p (x :: xs) with p x
... | False = len-filter p xs
... | True = suc (len-filter p xs)
filter : {n : Nat} ->
    (p : Nat -> Bool) -> (xs : Vec n) -> Vec (len-filter p xs)
filter p [] = [] D Dependent polymorphism helps
filter p (x :: xs) with p x
... | False = filter p xs
... | True = x :: filter p xs
```


Classification of Polymorphism

Straychey [1967], Reynolds [1983]
Ad-hoc Int \times Int $\xrightarrow{+ \text { Int }}$ Int

This Talk
[I] A semantics for dependently-typed programming
[II] A kind of polymorphism from semantics

New Semantics of Inductive Families

1) Simplified version of semantics of dependently-sorted abstract syntax [Fiore LICS'08]
2) Dependency category \mathbb{S} of sorts
3) The category of discourse is

Set $^{\mathbb{S}}$

Dependency Category \mathbb{S}

data Nat : Set where
zero : Nat
suc : Nat \rightarrow Nat
data Vec : Nat \rightarrow Set where nil : Vec Zero
cons $:(n: N a t) \times(a: A) \times \operatorname{Vec} n \rightarrow V e c(s u c n)$
\triangleright Dependency category \mathbb{S} of sorts - skeletal, DAG

$$
\mathbf{N} \stackrel{\text { len }}{\longleftarrow} \mathbf{V}
$$

Objects: sorts
Arrows : "sort dependencies"

Semantic Construction of Models

data Nat : Set where

$$
\begin{aligned}
& \text { zero : Nat } \\
& \text { suc : Nat } \rightarrow \text { Nat }
\end{aligned}
$$

data Vec : Nat \rightarrow Set where nil : Vec Zero
cons $:(n: N a t) \times(a: A) \times \operatorname{Vec} n \rightarrow V e c(s u c n)$
\triangleright Functor $\boldsymbol{F}: \mathbf{S e t}^{\mathbb{S}} \rightarrow \mathbf{S e t}^{\mathbb{S}}$ modelling an inductive family
\triangleright Initial \boldsymbol{F}-algebra

Why Interesting? - Programming Viewpoint
\triangleright The category of discourse Set $^{\text {s }}$
\triangleright A natural transformation

$$
f: A \rightarrow B \quad \text { in Set }^{\mathbb{S}}
$$

is a family of functions

$$
\left\{f_{s}: A_{s} \rightarrow B_{s} \mid s \in \mathbb{S}\right\}
$$

satisfying "naturality" ... polymorphism?

Sort Dependency in Models

\triangleright Term model $\boldsymbol{T} \in \mathbf{S e t}^{\mathbb{S}}$

$$
\begin{aligned}
& T_{\mathrm{N}}=\{\text { zero }\} \cup\left\{\operatorname{suc}(n) \mid n \in T_{\mathrm{N}}\right\} \\
& T_{\mathrm{V}}=\{n i l\} \cup\left\{\operatorname{cons}(n, b, y) \mid n \in T_{\mathrm{N}}, b \in T_{B}, y \in T_{\mathrm{V}},\right. \\
& \\
& \quad T(\mathrm{len})(y)=n\}
\end{aligned}
$$

\triangleright Functoriality of $\boldsymbol{T}: \mathbb{S} \rightarrow$ Set

Sort Dependency in Model

\triangleright Term model $\boldsymbol{T} \in \mathbf{S e t}^{\mathbb{S}}$

$$
\begin{aligned}
& T_{\mathrm{N}}=\{\text { zero }\} \cup\left\{\operatorname{suc}(n) \mid n \in T_{\mathrm{N}}\right\} \\
& T_{\mathrm{V}}=\{n i l\} \cup\left\{\operatorname{cons}(n, b, y) \mid n \in T_{\mathrm{N}}, b \in T_{B}, y \in T_{\mathrm{V}},\right. \\
& \\
& \quad T(\text { len })(y)=n\}
\end{aligned}
$$

\triangleright Functoriality of $\boldsymbol{T}: \mathbb{S} \rightarrow$ Set

Dependent Polymorphism

$$
\begin{array}{rlrl}
H_{-}: V e c(m) \times V e c(n) & \rightarrow V e c(m+n) & +_{-}: N a t \rightarrow N a t \\
n i l+y s & =y s & \text { zero }+y=y \\
(x: x s)+y s=x:(x s+y s) & \operatorname{suc}(n)+y=\operatorname{suc}(n+y) \\
V & T_{V} \times T_{V} \xrightarrow{H} &
\end{array}
$$

Dependent Polymorphism

$$
\left.\begin{array}{rlrl}
-H_{-}: V e c(m) \times V e c(n) & \rightarrow V e c(m+n) & +_{-}+N a t & \rightarrow N a t \\
n i l+y s & =y s & & \text { zero }+y=y \\
(x: x s)+y s & =x:(x s+y s) & & \operatorname{suc}(n)+y
\end{array}\right)=\operatorname{suc}(n+y)
$$

Dependent Polymorphism

${ }_{-} H_{-}: V e c(m) \times V e c(n) \rightarrow V e c(m+n)$ $\boldsymbol{n i l}+\boldsymbol{y} \boldsymbol{s}=\boldsymbol{y s}$ $(x:: x s)+y s=x::(x s+y s)$
${ }_{-}+_{-}: N a t \rightarrow N a t$ $z e r o+y=y$
$\operatorname{suc}(n)+y=\operatorname{suc}(n+y$

in \mathbb{S}
in Set

$$
\boldsymbol{T} \times \boldsymbol{T} \xrightarrow{\oplus} \boldsymbol{T} \quad \text { in } \text { Set }^{\mathbb{S}}
$$

Schematic definition

$$
\begin{aligned}
z \oplus y & =y \\
c(n) \oplus y & =c(n \oplus y)
\end{aligned}
$$

. . . is dependently polymorphic

Conclusion: What types admit this reading?

1. When indices are the "shapes" of data in a type
(i) Vectors a2 :: (a1 :: []) : Vec (suc (suc zero))
(ii) "Shape indexed" type of trees [Hamana LMCS'10] e.g. $\operatorname{bin}(\operatorname{If}(3), \operatorname{If}(5))$: $\operatorname{Tree}(B(L, L))$
2. When indices are calculated by fold

- Theoretical basis of code reuse in dependently-typed programming

