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Abstract—We formalise and study the notion of polymorphic
algebraic theory, as understood in the mathematical vernacular as
a theory presented by equations between polymorphically-typed
terms with both type and term variable binding.

The prototypical example of a polymorphic algebraic theory
is System F, but our framework applies more widely. The extra
generality stems from a mathematical analysis that has led to
a unified theory of polymorphic algebraic theories with the
following ingredients:
- polymorphic signatures that specify arbitrary polymorphic

operators (e.g. as in extendedλ-calculi and algebraic effects);
- metavariables, both for types and terms, that enable the generic

description of meta-theories;
- multiple type universesthat allow a notion of translation be-

tween theories that is parametric over different type universes;
- polymorphic structuresthat provide a general notion of alge-

braic model (including the PL-category semantics of System F);
- a Polymorphic Equational Logicthat constitutes a sound and

complete logical framework for equational reasoning.
Our work is semantically driven, being based on a hierarchical

two-levelled algebraic modelling of abstract syntax with variable
binding.

Index Terms—polymorphism, equational logic, presheaves, cat-
egorical semantics, the Grothendieck construction

I. I NTRODUCTION

The notion of polymorphism introduced by Strachey [32]
is one of the most remarkable inventions in programming-
language theory. The theory of polymorphism started with
the polymorphicλ-calculus of Girard [13] and Reynolds [29],
and led to Milner’s striking application to functional program-
ming [25]. Since then, the theory has deepened and its applica-
bility spread broadly. Numerous systems have been extended
to support polymorphism. Nowadays, it is not only supported
in functional languages and proof assistants (e.g. ML, Haskell,
Coq, Agda), but also other systems have been extended to cope
with polymorphism, such as theπ-calculus [27]. It has further
been incorporated into object-oriented languages (e.g. Java,
C++) where it is regarded as a key feature of generic program-
ming. The range of applicability of polymorphism illustrates
that, despite its origins, it is not necessarily based onλ-calculi.

But, what are polymorphic calculi?
In tackling this question, the aim of the paper is to establish

an algebraic framework for analysing and reasoning about
polymorphic systems generally. Indeed, we formalise and
study the notion ofpolymorphic algebraic theory, as a formal
theory presented by equations between polymorphically-typed
terms. In doing so, we develop: signatures for polymorphic

term constructors built on top of signatures for polymorphic
types; algebraic theories giving rise to the syntax and seman-
tics of polymorphic types and terms, and thereby to equational
presentations and their models; and a sound and complete
logical framework for equational reasoning about polymorphic
algebraic theories.

Our approach is not based on a specific polymorphic
λ-calculus. It is more general, and captures varieties of poly-
morphic systems that include extendedλ-calculi as particular
examples. The necessary background for our work follows.

1. Abstract syntax and variable binding. Our starting point
is the algebraic model of abstract syntax with variable binding
in presheaf categories [10]. The prototypical example is the
syntax of untypedλ-terms:

x1, . . . , xn ` xi

x1, . . . , xn ` t x1, . . . , xn ` s

x1, . . . , xn ` t@s

x1, . . . , xn, xn+1 ` t

x1, . . . , xn ` λ(xn+1.t)

Its abstract syntax is generated by three term constructors: the
variable former, the application@, and the abstractionλ. The
variable former is a nullary operation parameterised by the
context, while@ is a binary function symbol;λ, however, is
not merely a unary function symbol, as it binds a variable
(and thereby decreases the context). To model the general
phenomenon of variable binding (not only forλ-terms), Fiore,
Plotkin and Turi [10] took the presheaf categorySetF as
universe of discourse. The categoryF has finite cardinals
{1, . . . , n} (n ∈ N) as objects, for which we henceforth abuse
notation and simply writen ∈ F, and all functions between
them as morphisms. Intuitively, this is the category of contexts
of nameless object variables (in the sense of de Bruijn [3])
and their renamings. An important result of [10] is that the
abstract syntax with variable binding (up toα-equivalence) of
any binding signature (viz. one with variable-binding function
symbols) is characterised as the initial algebra of a prescribed
endofunctor modelling a signature (e.g. forλ-terms).

For example, the signature endofunctorΣλ on SetF for the
abstract syntax ofλ-terms is given byΣλ(A) = V+A×A+δA
where each summand corresponds to each constructor. The
presheaf of variablesV ∈ SetF is given byV(n) = n and the
endofunctorδ on SetF, modelling context extension, is given
by δA(n) = A(n + 1).



A Σ-algebrafor an endofunctorΣ is a pair(A, α) consist-
ing of a carrierA and an algebra-structure mapα : ΣA → A.
The initial Σλ-algebra can be constructed inductively as the
presheafΛ of all λ-terms moduloα-equivalence. This explains
directly why presheaves are suited to model syntax with
binding; namely

a judgmentn ` t is modelled as t ∈ Λ(n) ,

and the renaming of free variables in aλ-term according to
ρ : n → n′ in F is modelled by the presheaf actionΛ(ρ) :
Λ(n) → Λ(n′).

2. Object variables and metavariables.The above devel-
opment was limited to the modelling ofobject-levelabstract
syntax. There is however also a need for considering ameta-
level. We explain this with an example.

When developing a theory ofλ-calculus, one uses both
object and meta variables. For instance, in the mathematical
vernacular (e.g. in the context of head normal forms), one may
consider theλ-term

λx. y M .

Here “x” and “y” are object-level variables, as theλ-calculus
is the object language; while, at the level of text, “M ” is
a meta-level variable, standing for someλ-term. From the
viewpoint of substitution, there is a crucial difference between
object variables and metavariables. Because ofα-equivalence,
the operation of substituting a term for an object variable is
not a simple textual substitution, e.g(λx.y M)[y := xx] =
(λx′.y M)[y := xx] = λx′.(xx)M for fresh x′; while the
substitution of a term for a metavariable is:

(λx. y M){M 7→ xx} = λx. y (xx) . (1)

Note that the object variablex is capturedby the binder, some-
thing intended at the meta-level. Viewing these phenomena
from the object and meta level viewpoints, the two classes
of variables are classified by their respective substitution
operations: capture-avoiding vs. possibly capturing.

3. FreeΣ-monoids.Besides object-level abstract syntax, how
can metavariables and the distinction between substitutions for
object and meta variables be incorporated within the algebraic
model of syntax with binding? This problem was explored in
Hamana [16] and in Fiore [5, Part I].

A Σ-monoid (A,α, ν, µ) introduced by Fiore, Plotkin and
Turi [10] consists of aΣ-algebra (A,α) and a monoid
(ν : V→A, µ : A • A → A) with respect to the substitution
monoidal structure(V, •) on SetF that is compatible with the
algebra structure (i.e.µ ◦ (α • id) = α ◦ (Σµ) ◦ strength). The
unit ν models the variable former; while the multiplicationµ
models object-variable substitution (here the tensor product•
gives the arity of substitution).

The key is to usefree Σ-monoids on presheaves of
metavariables. Importantly, the freeΣ-monoid over a presheaf
X ∈ SetF, denotedMX, is constructed inductively as an
initial

(
V + Σ(−) + X • (−)

)
-algebra, and gives a presen-

tation of syntax involving binding andmetavariables. In this

characterisation, the endofunctorV + Σ(−) models syntax
with binding (as in§ I-1) and the endofunctorX • (−) models
the syntactic construct of metavariables:

M[t1, . . . , tk]

where M ∈ X(k) is a metavariableand where the index
k, referred to as thearity of M, designatesk free variables
in terms to be substituted forM. The termst1, . . . , tk are
replacements for thesek free variables after instantiatingM.

The freeness ofMX states that every mapθ : X → A,
for A a Σ-monoid, uniquely extends to aΣ-monoid homo-
morphism θ] : MX → A. It is here that the notion of
metavariable substitutionappears. Syntactically, one under-
standsθ as anassignment for meta-substitutionandθ] as the
corresponding meta-substitution operation on terms involving
metavariables fromX. For instance, in the language of free
Σ-monoids, example (1) above is formally recast as

θ]
(
λ(x. y@ M[x])

)
= λ

(
x. y@ (x@x) )

for θ = {M 7→ 1@1} where1 denotes a free variable.
The syntactic theory of abstract syntax with variable binding

and metavariables was introduced by Aczel [1]. This formal
language allowed him to consider a general framework of
rewrite rules for calculi with variable binding. This influenced
Klop’s Combinatory Reduction Systems [21]. Hamana clari-
fied its algebraic semantics usingΣ-monoids [17], extended it
to simply-typed case [19], and considered equational logic and
rewriting systems with variable binding [18]. Fiore et al. [8,9]
considered algebraic theories for suchsecond-orderequational
presentations. The model theory and equational logic of these
was only developed for sorted (e.g. untyped and simply-typed)
languages.

4. Polymorphic abstract syntax.The work [20] tackled the
algebraic modelling of polymorphically-typed abstract syntax.
A crucial departure from the many-sorted case [24,4] is the
need for a dependent indexing structure on contexts and types
to capture the algebraic structure of polymorphic terms. In a
polymorphic system, such as System F, well-typed terms are
formulated using judgments of the following form:

type 
context

result
typetermterm 

context

(2)

The arrows here indicate dependency, as type variables in
n ∈ F (which refers to the set{1, . . . , n} of nameless type
variables) may appear in any of the other parts of the judgment.
This dependence is more complex than in the untyped case
n ` t (where onlyn ∈ F is a required index and thereforeSetF

suffices). To model such dependent context and type structures
with respect to a universe of typesU ∈ SetF, [20] introduced
the categoryGU of contexts and result types defined as



and identified the Grothendieck construction [15] (for which
we use the notation

∫
) as the key to capture the depen-

dence (2).
The universe of discourseSetGU was then shown to be

appropriate for modelling polymorphically-typed object-level
syntax [20], and Fiore [6] further isolated the notion of discrete
generalised polynomial functor as a suitable mathematical
structure for this purpose. HereU is the “type universe” (with
U(n) the set of types under the type contextn) andF↓(Un)
is the category of term contexts with types inU(n).

5. This paper. We develop polymorphic algebraic theories
founded on these earlier works. We incorporate the notions
of metavariables andΣ-monoids reviewed in§ I-2 and I-3
into the algebraic polymorphic setting reviewed in§ I-4. Syn-
tactically, the framework encompasses meta-types (viz. types
with type metavariables) and meta-terms (viz. terms with both
meta-types and term metavariables). We explain why this is
necessary next.

Consider theβ-axiom of typedλ-calculus:

Γ ` (λxσ.M)N = N [x := N ] : τ .

Is this asingle axiom? One usually thinks so, but this is in
fact aschemaof axioms, asM andN are metavariables, and
σ and τ are metavariables for types. Therefore, it should be
regarded as a representation of afamily of axioms of the object
system, indexed by all possible object termsM, N and object
typesσ, τ . This process reflects the formulation of signatures.
Following this line, then,λ-abstraction should also be regarded
asa family of function symbolsλσ,τ : (σ)τ → σ⇒τ indexed
by object typesσ, τ . However, one usually keepsσ and τ
as meta-level types (henceforth referred to asmeta-types) and
considers a singleλσ,τ to develop a theory.

Here, we will precisely formulate the meta and object vari-
able distinction. In polymorphic algebraic theory,λ-abstraction
is formalised as asingle function symbol specified by

S : ∗, T : ∗ . abs : (S)T → S⇒T

whereS and T are type metavariables, and where. separates
a metavariable context and the arity information of a function
symbol usingmeta-types(as e.g.S⇒T). This leads to an
important clarification. Up to this point, we have encountered
two type universes for formalising a theory:
(i) The universe of all object types (denoted byM0).
(ii) The universe of all meta-types (denoted byMS).

Clearly, the universes of object types and of meta-types must
have similar mathematical structure. What is this precisely?
Moreover, the semantics of the type universe must also have
such a structure. This is the first step to answer the question
posed at the beginning of the Introduction: “what are poly-
morphic calculi?”. Namely, we need to clarify at firstwhat is
a universe of polymorphic types. Our answer is

a universe of polymorphic types should be aΣ-monoid,

for Σ a signature of type constructors. Note thatM0 is
the initial Σ-monoid, whileMS is a freeΣ-monoid. The

mathematical theory naturally requires one to deal with such
multiple universes, and it is in this sense that we refer to it as
beingmultiversal.

6. Organisation. The paper is organised as follows. We
introduce the notion of polymorphic signature in Section II
and their corresponding endofunctors in Section III. We ax-
iomatise type-in-term substitution in Section IV. We further
define polymorphic structures as a general algebraic model in
Section V. In Section VI, we present Polymorphic Equational
Logic. Finally, in Section VII, we exemplify how polymorphic
algebraic theories specify concrete calculi.

7. Future work. Various directions for further work are
possible. A promising one is to apply the mathematical theory
of the paper to mechanised formalisation (such as in Coq [2]).

Polymorphic algebraic theories of effects, which are here
only exemplified, should be worked out in detail.

An algebraic theory for theπ-calculus has been given [31].
Along this line, an algebraic theory for the polymorphicπ-
calculus [27] in the setting of polymorphic algebraic theories
seems a challenging problem.

II. T YPE UNIVERSES ANDPOLYMORPHIC SIGNATURES

We start motivating the development with the prototypical
example of System F, illustrating and explaining how our
notion of polymorphic signature specifies type and term struc-
tures.

Example II.1 (System F [13,29]) The polymorphic signature
ΣF = (ΣTy

F , ΣTm
F ) for System F consists of: a type signature

ΣTy
F = { b : ∗, ⇒ : ∗, ∗ → ∗, ∀ : (∗)∗ → ∗ } which

specifies type constructors. The signatureΣTm
F for terms is

S, T : ∗ . abs : (S)T → S⇒T

S, T : ∗ . app : S⇒T, S → T

T : (∗)∗ . tabs : 〈α〉T[α] → ∀(α.T[α])
S : ∗, T : (∗)∗ . tapp : ∀(α.T[α]

) → T[S]

Let us now see how the term signature faithfully encodes
the vernacular typing rules, considering the term and type
abstraction rules:

Ξ | Γ, x : σ ` t : τ

Ξ | Γ ` λx : σ. t : σ⇒τ

Ξ, α | Γ ` t : τ

Ξ | Γ ` Λα. t : ∀α. τ

The arity of theabs term constructor is parameterised by
two type metavariablesS andT, both of arity∗ and thereby to
be understood as representing types. The source arity(S)T

of abs represents the premise of the term-abstraction rule,
expressing that it consists of a term of typeT in a context
extended with a fresh term variable of typeS. Note that the
informal metavariablesσ andτ are respectively formalised by
means of the formal metavariablesS and T. The target arity
S⇒T of abs represents the type of the term in the conclusion
of the rule.

The arity of thetabs term constructor is parameterised by a
metavariableT of arity (∗)∗ representing an open type with one
type variable. The source arity〈α〉T[α] of tabs represents the



premise of the type-abstraction rule, expressing that it consists
of a term of open typeT[α] in a context extended with a fresh
type variableα. Function symbol declarations are meant to
be instantiated to concrete cases. For instance,abs : (S)T →
S⇒T is instantiated toabsθ : (nat)bool → nat⇒bool under
θ = {S 7→ nat, T 7→ bool}. The formal treatment follows.

Definition II.2 A type signatureΣTy is a set of type con-
structors with arities specified asc : (∗n1)∗, · · · , (∗n`)∗ → ∗
with ni ∈ N. The intended meaning here is that ofc taking `
arguments with thei-th argument bindingni type variables.

Definition II.3 A type metavariableS of arity n ∈ N is
declared asS : (∗n)∗, with the prefix omitted whenn = 0. A
set of type metavariablesS corresponds to anN-indexed set
{S(k)}k∈N where theS(k) are the sets of metavariables inS
of arity k. It can be considered as the presheafS ∈ SetF given
by S(n) =

∐
k∈N S(k)× F(k, n).

A type signature is abinding signaturein the sense of [10]
and, as such, induces a signature functorΣTy on SetF (cf. § I-
1). We letMX denote the freeΣTy-monoid on a presheaf
X ∈ SetF [16,5] (cf. § I-3), being particularly interested in
this construction when performed on a presheaf of type
metavariables.

For a set of type metavariable declarationsS, the presheaf
MS ∈ SetF consists ofmeta-typesin context, with metavari-
ables from S. We use the notation(S . n ` τ) for
τ ∈MS(n). Such a meta-typeτ may contain metavariables
from S andn type variables. Furthermore, we implicitly use
the technique of de Bruijn levels [3] for representing abstract
syntax with variable binding. For example, in the context of
Example II.1, the meta-type∀(α.T[α]), where T is a type
metavariable of arity1, stands for∀(1.T[1]). Also, the source
arity 〈α〉(T[α]) of tabs stands for〈1〉(T[1]).

Definition II.4 A type universeU for a type signatureΣTy is
aΣTy-monoid. Amorphism of type universesis aΣTy-monoid
homomorphism.

A typical example of a type universe isM0 (the universe
of object types) and, more generally,MS (the universe of
meta-types with metavariables fromS). A non-syntactic type
universe features in the PL-category semantics of System F
(Example VII.3).

As a notational convention, we use the vector notation
−→
(−)

for sequences; the length function for these is denoted| − |.
Definition II.5 A polymorphic signatureΣ = (ΣTy, ΣTm)
consists of a type signatureΣTy with a term signatureΣTm

given by a set of function symbols with arities of the form

S . f : 〈k1〉(−→σ1)τ1, . . . , 〈k`〉(−→σl)τ ` → τ (3)

where` ∈ N andS is a set of type metavariable declarations
with respect to whichS . ki ` −→σi andS . ki ` τ i for all
1 ≤ i ≤ `, and S . 0 ` τ . The intended meaning here is
that of f taking ` arguments with thei-th argument binding
ki type variables and|−→σi| term variables.

Example II.6 (Polymorphic FPC [23]) The type signature
ΣTy is ΣTy

F extended with+,× : ∗, ∗ → ∗ andµ : (∗)∗ → ∗.
An excerpt of the term signature follows:

T1, T2, T : ∗ . case : T1 + T2, (T1)T, (T2)T→ T

T : (∗)∗ . intro: T[µ(α.T[α])] → µ(α.T[α])
T : (∗)∗ . elim : µ(α.T[α]) → T[µ(α.T[α])]

An important point to note above is that the source and target
arities of function symbols are written in the language of free
ΣTy-monoids [16,5] (cf.§ I-3), rather than in an informal meta-
language.

Example II.7 (Existential λ-calculus [11]) The type signa-
ture is given by

⊥ : ∗ , ¬ : ∗ → ∗ , ∧ : ∗, ∗ → ∗ , ∃ : (∗)∗ → ∗ .

As for the terms, we consider the following two key rules:

Ξ | Γ ` s : σ{α :=τ}
Ξ | Γ ` 〈τ , s〉 : ∃(α.σ)

Ξ | Γ ` s : ∃(α.σ) Ξ, α | Γ, x : σ ` t : τ

Ξ | Γ ` unpack s as 〈α, x〉 in t : τ

In the unpack rule,α does not appear free inΓ, τ . The term
signature corresponding to these two rules is thus:

S : (∗)∗, T : ∗ . pack : S[T] → ∃(α.S[α]
)

S : (∗)∗, T : ∗ . unpack : ∃(α.S[α]
)
, 〈α〉(S[α])T → T

Note that the second argument of the function symbolunpack
is specified under a type metavariable context withT : ∗
thereby enforcing the side condition of the rule thatα does
not appear free inτ .

Example II.8 (Global state) The signature for a basic alge-
braic theory of global state [28] has type signatureL : ∗ for
locations,E : ∗ for expressions, andBool, Nat : ∗ for Boolean
and natural number values. The term signature

V : ∗ . lookup : L, (V)E → E

V : ∗ . update : V, L,E → E

provides operations that are parameterised by types. This is
unlike the original treatment [28], where the parameterisation
is only treated informally. An algebraic theory over this sig-
nature is first-order with variable binding and polymorphism,
without recourse toλ-calculi. This style may be useful for
more flexible algebraic characterisation of effects [28].

As shown in the examples, polymorphic signatures are
suitable for the specification of a wide variety of polymor-
phic languages. Indeed, the notion encompasses polymorphic
types (with variable binding and type metavariables) in the
broad sense of them beingvariable types, as referred to
by Girard [14], together with polymorphic function symbols
(parameterised by type metavariables) between them.

III. POLYMORPHIC SIGNATURE FUNCTORS

This section presents the categorical semantics of polymor-
phic signatures. In the spirit of categorical algebra, this is done
by associating signatures with endofunctors that interpret the
arity of function symbols (§ III-D). As customary, then, models
arise as endofunctor algebras.



A. Meta-substitution

Definition III.1 For a small categoryC, we use the notation
|C| for the set of its objects; while, for a presheafP ∈ SetC,
we write |P | for its underlying indexed set inSet|C|. The left
adjoint to the functor| − | : SetC → Set|C| is denoted by
(−). (The definition ofS in Def. II.3 is the instance of this
construction forC = F.)

Definition III.2 Let S be a set of type metavariable declara-
tions and letU be a type universe. Anassignmentθ : S Ãn U
(n ∈ N) is anN-indexed functionθ : S → |δnU | . Henceforth,
since [S⇒U ](n) ∼= SetN(S, |δnU |), the exponential presheaf
[S⇒U ] ∈ SetF will be regarded as consisting of assignments.

A main result of [5, Part I] established that the free
ΣTy-monoid monadM is strong with respect to the cartesian
closed structure ofSetF. This has two important consequences
for us here: for every type universeU , the universal extension
map internalises as a morphismM(X) × [X ⇒ U ] → U in
SetF and every presheafδnU ∼= [Vn ⇒ U ] ∈ SetF (n ∈ N)
pointwise acquires a canonical type-universe structure. One
thus obtains ameta-substitution operation(or interpretation
function) M(S) × [S ⇒ δnU ] → δnU of meta-types under
assignments, for which we will use the following notation

S . k ` τ , θ : S Ãn U 7→ τθ ∈ U(n + k) .

B. Contexts for polymorphism

Following [20], the universes of discourse for the inter-
pretation of polymorphic signatures will be categories of
presheaves on small categories of contexts that arise from the
Grothendieck construction [15].

The (covariant) Grothendieck constructionon a func-
tor F : F → C , for C a full subcategory of the large cat-
egory of locally small categories and functors, is the category
denoted

∫ F or
∫ I∈F F(I) with objects given by pairsI ∈ F

andA ∈ F(I), and morphisms(f, ϕ) : (I, A) → (J,B) with
f : I → J in F andϕ : F(f)(A) → B in F(J).

We use the Grothendieck construction for manufacturing
categories of contexts. For a setT (of sorts), the categoryF↓T

(of T -sorted contexts) is the opposite of
∫ n∈Fop

Tn. Thus, it
has objectsΓ : |Γ| → T with |Γ| ∈ F and morphismsρ :
Γ → Γ′ given by mapsρ : |Γ| → |Γ′| in F such thatΓ =
Γ′◦ρ : |Γ| → T . Every presheafT ∈ SetF (of sorts in context)
induces a functorF ↓ (T−) : F → Cat, for Cat the category
of small categories and functors. The category

F(T )
def
=

∫ n∈F
F↓(Tn)

(of T -sorted contexts) has objects(n|Γ) with n ∈ F and
Γ ∈ F↓(Tn), and morphisms(ρ, π) : (n|Γ) → (n′|Γ′) with
ρ : n → n′ in F andπ :

(
(Tρ) ◦ Γ

) → Γ′ in F↓(Tn′).
We will also need to consider indexed versions of this

construction. To this end, for a presheafU ∈ SetF, we define

H(T, U)
def
=

∫ n∈F
F↓(Tn)× Un .

This category has objects(n | Γ ` τ) with (n |Γ) ∈ FT and
τ ∈ Un, and morphisms(n | Γ ` τ) → (n′ | Γ′ ` τ ′) given
by maps(ρ, π) : (n|Γ) → (n′|Γ′) in FT such that(Uρ)τ = τ ′.
The categoryGU for contexts and result types(cf. § I-4) is
defined asH(U,U).

C. Generalised polynomial functors

A central technical tool in our development is the notion of
generalised polynomial functor introduced in [6]. This fits a
general abstract scheme for defining polynomial constructions
that also incorporates the notion of dependent polynomial
functor [26,12]. This section reviews the basics, deferring
details to [6]. Recall that everyf : X→ Y in Cat induces the
adjoint situations

f! a f∗ a f∗ : SetX → SetY

wheref∗ = (−) ◦ f and f! and f∗ are respectively given by
left and right Kan extending alongf [15,22]. For instance,
the adjunction(−) a | − | : SetC → Set|C| introduced in
Definition III.1 amounts toi! a i∗ for i the inclusion|C| → C.

A polynomialP is a diagramA Isoo a // J t // B in Cat.
The generalised polynomial functorinduced byP is

FP = t! a∗ s∗ : SetA → SetB . (4)

A polynomial diagram isdiscrete when its componenta :
I → J is of the form

∐
i∈I ∇Li :

∐
i∈I Li · Ci →

∐
i∈I Ci

for a set I and finite setsLi, where L · C =
∐

`∈LC
and ∇L : L · C → C is the codiagonal[IdC]`∈L. As we
will see, discrete generalised polynomial functors provide an
expressive and flexible formalism. Indeed, since they admit
inductive constructions of free algebras [6, Prop. 5.1], in the
following two sections we will use them to model polymorphic
signatures (§ III-D) and type-in-term substitution (§ IV).

D. Polymorphic signature functors

We define the signature functor corresponding to a poly-
morphic signatureΣ. This is done on a type universeU
for ΣTy on the universe of discourse given by the presheaf
categorySetGU .

To explain the approach, we start by analysing concrete
cases in System F (Example II.1). For the term abstraction
function symbol

S : ∗, T : ∗ . abs : (S)T → S⇒T

the corresponding operation of an algebraA ∈ SetGU should
be given by a natural map

absA : A(n | Γ, σ ` τ ) → A( n | Γ ` σ⇒Uτ ) .

using an assignmentθ = {S 7→ σ, T 7→ τ}, whereS⇒ T is
interpreted asσ⇒Uτ . Some operations may also change the
context for type variables, as in the case of the type abstraction:

tabsA : A( n + 1 | Γ ` τ ) → A
(
n | Γ ` ∀U(τ)

)
.

To obtain these kind of algebraic operations from the arity
specification of function symbols, one needs to formulate



the instantiation of meta-types in arities by types in the
universeU by means of meta-substitutions, and incorporate
the extension of contexts for type variables as prescribed
by source arities. Technically, this requires the use of the
Grothendieck constructionH

(
U, [S ⇒ U ]

)
of § III-B, for S

a set of metavariable declarations.

Definition III.3 Let Σ be a polymorphic signature andU a
type universe forΣTy. To every function symbolf ∈ ΣTm

we associate the following discrete polynomialPf

GU ` · H(
U, [S⇒U ]

)sf
oo

∇` // H
(
U, [S⇒U ]

) tf
// GU

where the source and target functors are respectively given by
sf

(
i, (n | Γ ` θ)

)
= (n + ki |

(
Γi + 〈−→σiθi〉

) ` τ iθi) and
tf (n | Γ ` θ ) = ( n | Γ ` τθ ), where Γi and θi respec-
tively arise fromΓ and θ by the presheaf action along the
coproduct injectionski ↪→ n + ki.

Thesignature functorΣ on SetGU is defined as the discrete
generalised polynomial functor

∐
f∈ΣTm FPf

. This is explicitly
given by

ΣA(n | Γ ` u ) =
∐

f,θ

∏

i∈`

A(n + ki | Γi,
−→σiθi ` τ iθi )

where the coproduct ranges over function symbols
(S . f : 〈k1〉(−→σ1)τ1, . . . , 〈k`〉(−→σ`)τ ` → τ) in ΣTm and
assignmentsθ : S Ãn U such thatτθ = u ∈ U(n).

IV. T YPE-IN-TERM SUBSTITUTION

The monoid multiplication of a type universe provides an
operation that models simultaneous capture-avoiding type-
in-type substitution. Polymorphic terms have type variables
and the need for instantiating them leads to a type-in-term
substitution operation that should be modelled. We address
this issue by giving an algebraic axiomatisation of type-in-
term substitution.

Let (U, ν, µ) be a type universe. Forτ ∈ U(n + `)
and σi ∈ U(n) with 1 ≤ i ≤ `, we denote by
τ{σ1, . . . , σ`} the multi-variable capture-avoiding substitu-
tion µn(τ ; νn(1), . . . , νn(n), σ1, . . . , σ`) ∈ U(n); pointwise
extending the notation toΓ{σ1, . . . , σ`} ∈ F ↓ (Un) for
Γ ∈ F ↓ (

U(n + `)
)
. Our aim is to define algebraic structure

on a presheafA ∈ SetGU amounting to functions

ςn(−, σ) : A(n + 1 | Γ ` τ) → A
(
n | Γ{σ} ` τ{σ}) (5)

with (n | Γ ` τ) ∈ GU and σ ∈ U(n), that we will later on
axiomatise so as to model the substitution of a distinguished
type variable by a type. We again invoke the formalism
of generalised polynomial functors and consider the discrete
polynomialP

GU H(δU, δU × U)soo t // GU

with s(n | Γ ` τ , σ) = (n + 1 | Γ ` τ) andt(n | Γ ` τ , σ) =
(n | Γ{σ} ` τ{σ}). We write ↑ for the discrete generalised
polynomial functorFP on SetGU induced byP , noting that
algebra-structure maps↑A → A amount to (5).

The axioms for type-in-term substitution are analogous
to the ones given for substitution algebras in [10]. To
present them, we need introduce the following notation: for
ρ : ` → m in F, U ∈ SetF, and A ∈ SetGU , we let ρU

n =
U(n + ρ) : U(n + `) → U(n + m) and ρA

n = A(n + ρ, id) :
A(n + ` | Γ ` τ) → A

(
n + m | ρU

n ◦ Γ ` ρU
n (τ)

)
; and con-

sider the weakening, contraction, and swapping mapsup :
0 → 1, con : 2 → 1, andsw : 2 → 2 in F.

Definition IV.1 Let (U, ν, µ) be a type universe. Atype-in-
term substitutionfor A ∈ SetGU is an algebraς :↑A → A in
SetGU subject to the following axioms:

a ∈ A(n | Γ ` τ), σ ∈ Un ` ςn(upA
n a, σ) = a

a ∈ A(n + 2 | Γ ` τ) ` ςn+1(a, newU
n ) = conA

n a

a ∈ A(n + 2 | Γ ` τ), σ ∈ U(n + 1), σ′ ∈ U(n)
` ςn(ςn+1(a, σ), σ′) = ςn(ςn+1(swA

n a, upU
n σ′), σ{σ′})

wherenew : 1 → δU (a generic new variable) is the transpose
of the pointν : V → U .

The axioms have an intuitive reading; e.g. the first one
expresses that substituting for a type variable not free in a
term does not affect the term.

The presheaf of object variablesV ∈ SetGU is defined as
V(n | Γ ` τ) =

(
F ↓Un

)(〈τ〉, Γ) ∼= {x ∈ |Γ| : Γ(x) = τ }.
It has a type-in-term substitution structureςV : ↑V → V
given by maps that interpret a variable of typeτ in contextΓ
as one of typeτ{σ} in contextΓ{σ}.

V. POLYMORPHIC STRUCTURES

We introduce polymorphic structures. They provide a gen-
eral basic notion of algebraic model, and thereby of abstract
syntax, for polymorphic algebraic theories.

In the vein of [24,4,20], forA, B ∈ SetGU , we de-
fine (A •B) ∈ SetGU by the coend(A • B)(n | Γ ` τ) =∫ ∆∈F↓Un

A(n |∆ ` τ)×∏
1≤i≤|∆|B

(
n |Γ ` ∆(i)

)
remarking

that(V, •) provides a monoidal structure onSetGU suitable for
considering monoids with polymorphic algebraic structure.

Definition V.1 Let Σ be a signature andU a type universe.
A (Σ,U)-polymorphic structureconsists of

(i) a Σ-monoid (A,α, ν, µ) in SetGU for Σ the signature
functor onSetGU obtained by Def. III.3, and

(ii) a type-in-term substitutionς : ↑A → A

that are compatible in the sense that the following commute

↑ΣA

↑α
²²

// Σ ↑A Σς
// ΣA

α
²²

↑A
ς

// A

↑V

↑ν
²²

ςV
// V

ν
²²

↑A
ς

// A

↑(A •A)

↑µ
²²

// ↑A • ↑A
ς•ς

// A •A

µ

²²

↑A
ς

// A

where↑Σ(−) → Σ↑(−) and ↑(−• =) → ↑(−) • ↑(=) are
appropriate coercion maps.



(Var)
(x : τ) ∈ Γ

x ∈ NUZ(n | Γ ` τ)
(Fun)

(S . f : 〈k1〉(−→σ1)τ1, . . . , 〈k`〉(−→σ`)τ ` → τ) ∈ ΣTm ki = |−→αi|
θ : S Ãn U θi = ı

[ S⇒U ]
i (θ) (ıi : n ↪→ n + ki)

ti ∈ NUZ(n + ki | Γ, −→xi : −→σiθi ` τ iθi) (1 ≤ i ≤ `)

fθ(−→α1.
−→x1.t1, . . . ,

−→αl.
−→xl .tl) ∈ NUZ(n | Γ ` τθ)

(MVar)

Z ∈ Z(n + k | x1 : τ1, . . . , x` : τ ` ` τ) −→σ = σ1, . . . , σk ∈ U(n)

ti ∈ NUZ
(
n | Γ ` τ i{−→σ }

)
(1 ≤ i ≤ `)

Zb−→σ c[t1, . . . , t`] ∈ NUZ
(
n | Γ ` τ{−→σ })

NB: In (Fun), for S =
�

Si : (∗ni) ∗ �
1≤i≤m

, the formal concretionfθ may be denotedfθ(S1),...,θ(Sm) or simply f when the omission is
inferable from the context. These function symbols bind both type and term variables and we implicitly assume the technique of de Bruijn
levels [3] for their representation. Eachθi is essentially the same substitution asθ, shifted to the indexn + ki to apply it under the binders
−→αi. A meta-termZb−→σ c[−→t ] may be denoted byZ[

−→
t ] when |−→σ | = 0, and byZb−→σ c when |−→t | = 0.

Fig. 1. Rules forNUZ

Morphisms of (Σ,U)-polymorphic structures, referred to
as (Σ,U)-polymorphic translations, are maps that are both
Σ-monoid morphisms and↑-algebra homomorphisms.

The category of(Σ,U)-polymorphic structures and(Σ, U)-
polymorphic translations is denotedPoly(Σ, U).

A. Free polymorphic structures

From the theories of equational systems [7] and of discrete
generalised polynomial functors [6] we have the following
result.

Theorem V.2 The forgetful functorPoly(Σ,U) → SetGU is
monadic.

We outline a construction of free(Σ,U)-polymorphic struc-
tures, obtaining the underlying indexed set of the free poly-
morphic structureNUX ∈ SetGU on a presheafX ∈ SetGU

as a quotient of an indexed setNU |X| ∈ Set|GU |.
For Z ∈ Set|GU |, the indexed setNUZ ∈ Set|GU | has

syntactic character and is defined by the rules of Fig. 1. In
this context, we let|NUX| be given by the quotient ofNU |X|
under the congruence generated by the identification

Zb−→σ c[tπ1, . . . , tπ|∆|] = Z′b−→σ c[t1, . . . , t|∆′|] (6)

for n ∈ F, π : ∆ → ∆′ in F↓(Un), Z ∈ X(n+|−→σ | | ∆ ` τ),
and Z′ = X(id, π)(Z) ∈ X(n+|−→σ | | ∆′ ` τ). This quotient
arises from the coend formula of the tensor product•. The
presheaf and polymorphic structures ofNUX are essentially
given syntactically.

B. Polymorphic abstract syntax with metavariables

We now consider free(Σ, U)-polymorphic structures that
correspond topolymorphic abstract syntax with metavariables.
First, one constructs a syntactic type universeU as a freeΣTy-
monoid. On top of this, one constructs polymorphic abstract
syntax as a free(Σ, U)-polymorphic structure over generators
given by indexed sets of term metavariables.

An indexed setZ ∈ Set|GU | is regarded as consisting of
metavariable declarations, whereZ ∈ Z(n |−→σ ` τ) stands for
the arity declarationZ : 〈n〉(−→σ )τ . Such metavariables are to be

instantiated by terms involvingn type variables and variables
of types−→σ .

Every indexed setZ ∈ Set|GU | freely gives rise to the
presheafZ ∈ SetGU . In view of the following characterisation,
the (Σ, U)-polymorphic structureNU (Z) ∈ SetGU is given in
purely syntactic terms:|NUZ| ∼= NUZ for Z(n | Γ ` τ)
given by

∐

(k |∆ `σ) ∈ GU

ρ ∈ F(k, n)

[
Uρσ ≡ τ

]× [
(Uρ) ◦∆ ≡ Γ

]× Z
(
k | ∆ ` σ

)
.

We refer to elements ofNUZ(n | Γ ` τ) asmeta-terms.
We will introduce next the notion of assignment and their

induced interpretation functions, yielding operations of meta-
substitution (i.e. substitution for metavariables in meta-terms).

For (k|∆) ∈ FU (cf. § III-B), the endofunctorδ(k|∆) on
SetGU is defined as

(
d(k|∆)

)∗
for d(k|∆) the endofunctor

on GU given byd(k|∆)(n |Γ ` τ) = ( k + n | ∆, Γ ` (τ) )
where(∆, Γ) = (Uı ◦∆) + (U ◦ Γ) for ı and  the first and
second coproduct injections intok + n.

Definition V.3 Let Z be a set of metavariable declarations
and A a polymorphic structure. Anassignmentfor ϑ :
Z Ã(k|∆) A, where(k|∆) ∈ FU , is an|GU |-indexed function
ϑ : Z → |δ(k|∆)A|.

For every (Σ, U)-polymorphic structureA, the presheaf
δ(k|∆)A inherits a polymorphic structure. As in the case of the
extension to aΣ-monoid morphism explained in§ I-3, by the
universal property ofNUZ, an assignmentϑ uniquely extends
to a (Σ,U)-polymorphic translationϑ] giving the interpreta-
tion function of a meta-term in a polymorphic structureA.
This is explicitly defined as follows.

Definition V.4 (Interpretation function ) For a (Σ, U)-
polymorphic structure(A,α, ν, µ, ς), the universal extension
of a morphism ϑ : X → A in SetGU is the (Σ, U)-
polymorphic translationϑ] : NUZ → A given as follows:

ϑ] : NUZ(n | Γ ` τ) −→ A(n | Γ ` τ)



ϑ](x) = ν(x)

ϑ](f(−→α1.
−→x1.t1, . . . ,

−→α`.
−→x`.t`)) = fA( ϑ](t1), . . . , ϑ](t`) )

ϑ](Zb−→σ c[−→t ]) = µ
(
ς(ϑ(Z),−→σ );

−−→
ϑ](t)

)

where fA is the algebra operation forf in (A,α) and
where, extending the notation introduced in (5), fora ∈
A(n + ` | Γ ` τ) and σi ∈ U(n) with 1 ≤ i ≤ `, we set
ς(a, σ1, . . . , σ`) = ς

( · · · ς(a, ı1(σ1)) · · · , ı`(σ`)
)

for ıi the
coproduct injectionn ↪→ n + `− i.

C. The multiverse of polymorphic structures

We combine all (Σ,U)-polymorphic structures, varying
over all type universesU into a single categoryPoly(Σ). This
category abstractly arises as the Grothendieck construction

Poly(Σ)
def
=

∫ U

Poly(Σ, U)

applied to a functorPoly(Σ,−) : ΣTy-Mon
op → CAT ; U 7→

Poly(Σ,U). This definition relies on that fact that if(U ′, A′)
is aΣ-polymorphic structure then so is(U, A′GL−M) for every
morphism of type universesL−M : U → U ′.

Definition V.5 A Σ-polymorphic structure(U,A) consists of
a type universeU and a(Σ,U)-polymorphic structureA.

A Σ-polymorphic translation between Σ-polymorphic
structures

(L−M, ϕ) : (U,A) −→ (U ′, A′)

consists of a pair of maps:

- a morphismL−M : U → U ′ of type universes, and
- a (Σ,U)-polymorphic translationϕ : A −→ A′GL−M.
The idea behind these maps is that they provide two-levelled
translations:L−M translates types inU to U ′ andϕ translates
elements fromA to A′ taking a shift of universe into account.
The categoryPoly(Σ) consists ofΣ-polymorphic structures
andΣ-polymorphic translations.

Universe shift. The categoryPoly(Σ) supports a notion
of translation between polymorphic structures on possibly
different universes. As an application, we indicate how one
can transport a meta-term on a universe to another one.

Let L−M : W → U be a morphism of type universes,
translating typesτ ∈ W (n) to typesLτM ∈ U(n). The functor
FL−M : FW → FU translates thus contextsΓ ∈ F ↓ (Wn)
to contextsLΓM =

(
(F↓L−Mn) ◦ Γ

) ∈ F↓(Un). Furthermore,
the functor

∣∣GL−M
∣∣
!

: Set|GW | → Set|GU | translates a set of
metavariable declarationsZ on the universeW to the set
of metavariable declarationsLZM on the universeU given
by Z ∈ LZM( n | LΓM ` LτM ) ⇐⇒ Z ∈ Z(n | Γ ` τ ) .
Finally, we have the assignmentZ →

∣∣NU LZM
(
GL−M)

∣∣,
mapping the metavariableZ ∈ Z(n | −→x : −→σ ` τ) to the
meta-termZ[−→x ] ∈ NU LZM

(
n | −→x :

−→LσM ` LτM), that induces
the polymorphic translationL−M : NWZ(n | Γ ` τ) →
NU LZM

(
n | LΓM ` LτM) whose effect is to translate types

within meta-terms.

VI. POLYMORPHIC EQUATIONAL LOGIC

We introduce Polymorphic Equational Logic (PEL): a sound
and complete logical framework for equational reasoning
about polymorphic algebraic theories.

The equational judgmentsof PEL are of the form

Z . n | Γ `W s = t : τ (7)

whereW is a type universe,Z is a set of metavariable decla-
rations ands, t ∈ NWZ(n | Γ ` τ) are meta-terms. WhenW
is a universe of meta-typesMS for a set of type metavariable
declarationsS (as e.g. in Figs. 3, 4, 5), equational judgments
are written asS | Z . n | Γ ` s = t : τ . Sets of equational
judgments are referred to asaxioms.

Definition VI.1 A Σ-polymorphic structure(U,A) satisfies
an equational judgmentZ . n | Γ `W s = t : τ if
- for all morphisms of type universesL−M : W → U , and
- for all assignmentsϑ : Z Ã(k|∆) A(GL−M),

ϑ](s) = ϑ](t)

holds in A(k + n | LΓ,∆M ` LτM). An algebraic modelof a
set of axiomsE is a polymorphic structure that satisfies all
the equational judgments inE.

A. PEL

The deduction system of PEL is given by the inference rules
of Fig. 2. The notation[x := t] used in the (Sub) rule stands
for the capture-avoiding substitution of the object variablex
by the meta-termt. The applicationρ(s) (resp.π(s)) replaces
type variables (resp. variables) ins by ρ (resp.π). PEL has
been synthesised from the mathematical model of polymorphic
structures on type universes using the following ideas.
(Ref), (Sym), (Tra): The rules of equivalence relations.
(Ax): An axiom becomes a theorem.
(USh): Universe shift with respect to the morphismL−M :

NWZ(n | Γ ` τ) → NU LZM
(
n | LΓM ` LτM).

(Sub): Multiplication of theΣ-monoidNUZ.
(Fun): Σ-algebra structure ofNUZ.
(MSub): Polymorphic translationϑ] : NUZ → δ(k|∆)NUZ ′.
(MVar): (Z • −)-algebra structure ofNUZ.
(Act): Presheaf action ofNUZ ∈ SetGU (cf. [20, § 3.2

Meaning of arrows]).
(TSub): Type-in-term substitution onNUZ.
Note that besides the equivalence-relation and axiom rules
common to all equational deductive systems, the above consist
of congruence rules that reflect the various algebraic aspects
of polymorphic structures.

B. Soundness and completeness

Let U be a type universe. For a set of axiomsE, defineZ
to be the disjoint union of all the translations of metavariable
declarations in the axioms ofE into U . Consider then the term
polymorphic structureNUZ on U . Derivable equations from
E define an|GU |-indexed equivalence relation=E on |NUZ|,
and we setNE

U Z(n | Γ ` τ) = NUZ(n | Γ ` τ)/=E .

Lemma VI.2 (U,NE
U Z) is an algebraic model ofE.



(Ref)

Z . n | Γ `U t = t : τ

(Sym)
Z . n | Γ `U s = t : τ

Z . n | Γ `U t = s : τ

(Tra)
Z . n | Γ `U s = t : τ Z . n | Γ `U t = u : τ

Z . n | Γ `U s = u : τ

(Ax)
(Z . n | Γ `W s = t : τ) ∈ E

Z . n | Γ `W s = t : τ
(USh)

Z . n | Γ `W s = t : τ

LZM . n | LΓM `U LsM = LtM : LτM L−M : W → U

(Sub)
Z . n | Γ `U si : σi (1 ≤ i ≤ m)

Z . n | x1 : σ1, . . . , xm : σm `U t = t′ : τ

Z . n | Γ `U t[−−−−−→xi := si] = t′[−−−−−→xi := si] : τ

(Fun)
(S . f : 〈k1〉(−→σ1)τ1, . . . , 〈k`〉(−→σ`)τ ` → τ) ∈ ΣTm ki = |−→αi|
θ : S Ãn U θi = ı

[ S⇒U ]
i (θ) (ıi : n ↪→ n + ki)

X . n + ki | Γ,
−−−−−→
xi : σiθi `U si = ti : τ iθi (1 ≤ i ≤ `)

Z . n | Γ `U fθ(−→α1.
−→x1.s1, . . . ,

−→α .̀−→x .̀ s`) = fθ(−→αl.
−→x1.t1, . . . ,

−→α .̀−→x .̀ t`) : τθ

(MSub)
ϑ : Z Ã(k|∆) NUZ ′

Z . n | Γ `U s = t : τ

Z ′ . k + n | ∆, Γ `U ϑ](s) = ϑ](t) : τ

(MVar)(
Z : 〈n + k〉(τ1, . . . , τ `)τ

) ∈ Z −→σ = σ1, . . . , σk ∈ U(n)

Z . n | Γ `U si = ti : τ i{−→σ } (1 ≤ i ≤ `)

Z . n | Γ `U Zb−→σ c[s1, . . . , s`] = Zb−→σ c[t1, . . . , t`] : τ{−→σ }

(Act)

ρ : m → n π : ρ(Γ) → ∆

Z . m | Γ `U s = t : τ

Z . n | ∆ `U πρ(s) = πρ(t) : ρ(τ)

(TSub)
Z . n + 1 | Γ `U s = t : τ σ ∈ U(n)
Z . n | Γ{σ} `U s{σ} = t{σ} : τ{σ}

Fig. 2. Polymorphic Equational Logic (PEL)

Vernacular notation
(β) Γ ` (λx.M)N = M [x := N ] : τ

(type β) Γ ` (Λα.M) σ = M [α := σ] : τ [α := σ]

Formal notation in PEL

(β) S, T : ∗ | M : (S)T, N : S . ` app( abs(x. M[x]), N ) = M[N] : T

(type β) S: ∗, T : (∗)∗ | M : 〈α〉T[α] . ` tapp
(
tabs(α. Mbαc)) = MbSc : T[S]

Fig. 3. Sample axioms for System F

Vernacular notation

(let∧) Γ ` let 〈x1, x2〉 = 〈M1, M2〉 in M = M [x1 := M1, x2 := M2] : τ

(letη) Γ ` let 〈x1, x2〉 = N in M [z := 〈x1, x2〉] = M [z := N ] : τ

(∃β) Γ ` unpack 〈ι,N〉 as 〈α, x〉 in M = M [α := ι, x := N ] : τ

(∃η) Γ ` unpack N as 〈α, x〉 in M [z := 〈α, x〉] = M [z := N ] : τ

Formal notation in PEL

(let ∧) S1, S2, T : ∗ | M : (S1, S2)T, M1 : S1, M2 : S2 . ` let
(
pair(M1, M2), x1.x2.M[x1, x2 ]

)
= M[M1, M2 ] : T

(let η) S1, S2, T : ∗ | M : (S1∧S2)T, N : S1∧S2 . ` let
(
N, x1.x2.M[pair(x1, x2)]

)
= M[N] : T

(∃β) S: (∗)∗, T, U : ∗ | M : 〈α〉(S[α]
)

T, N : S[U] . ` unpackS,T

(
packS,U(N), α.x.Mbαc[x]

)
= MbUc[N] : T

(∃η) S: (∗)∗, T : ∗ | M :
(∃(α.S[α])

)
T, N : ∃(α.S[α]) . ` unpackS,T

(
N, α.x.M[packS,α(x)]

)
= M[N] : T

Fig. 4. Sample axioms for the existentialλ-calculusλ∃

V : ∗ | X : E . ` : L ` lookup
(
`, v.update(`, v, X)

)
= X : E

V : ∗ | X : (V, V)E . ` : L ` lookup
(
`, w.lookup(`, v.X[v, w])

)
= lookup

(
`, v.X[v, v]

)
: E

V : ∗ | X : E . ` : L, v, w : V ` update
(
`, v, update(`, w, X)

)
= update(`, w, X) : E

Fig. 5. Sample axioms for global state



Theorem VI.3 Polymorphic equational logic is sound and
complete; i.e., for all type universesU , an equational judgment
(Z . n | Γ `U s = t : τ) is derivable from a set of axiomsE
in PEL iff it is satisfied by all the algebraic models ofE.

VII. E XAMPLES

Example VII.1 Continuing with the examples of§ II, sample
axioms of System F, the existentialλ-calculus, and global
state are respectively presented as PEL equations in Figs. 3,
4, and 5.

Example VII.2 (CPS translation [11]) Fujita [11] gave a
CPS translation from System F to the existentialλ-calculusλ∃.
The translation consists of a type translation(−)• from System
F types toλ∃-types, together with a CPS translation[[−]] from
System F terms toλ∃-terms (e.g.

(∀(α.τ)
)• = ¬∃(α.¬τ•)

and [[Λα.M ]] = λa. a (λk.unpack k as 〈α, c〉 in [[M ]]c)). The
CPS translation is sound and complete:

Γ `F s = t : τ ⇐⇒ ¬¬Γ• `λ∃ [[s]] = [[t]] : ¬¬τ• . (8)

Interestingly, this pair of translations is an example of our
notion of polymorphic translation. Indeed, letTF (resp.T∃)
be the initial type universe forΣTy

F (resp. ΣTy
∃ ) and let

ΛF = NF
TF

0 (resp.Λ∃ = N λ∃
T∃ 0) be the initial algebraic model

for System F (resp.λ∃). The definition of(−)• determines
an ΣTy

F -algebra structure onT∃, and the definition of[[−]]
determines aΣTm

F -algebra structure onΛ¬¬∃ = Λ∃
(
G¬¬(−)

)
for ¬¬ the double negation endomap onT∃. This yields aΣF-
polymorphic structure(T∃,Λ¬¬∃ ) which, by (8), is an algebraic
model of System F, and we have aΣF-polymorphic translation(
(−)•, [[−]]

)
: (TF,ΛF) → (T∃,Λ¬¬∃ ).

Example VII.3 (Categorical model of System F [30])
Recall that aPL-categoryconsists of a cartesian categoryC
with objects given by finite powers of a distinguished objectΩ,
aC-indexed cartesian closed categoryC(−,Ω) : Cop → CCC,
for CCC the large category of cartesian closed categories, and
right adjoints toC(π1, Ω) : C(−, Ω) → C(−×Ω, Ω) satisfying
the Beck-Chevalley condition.

From a PL-category, one defines a polymorphic structure
(U, PL) for System F by setting

U =
∣∣C(Ω(−), Ω)

∣∣ ∈ SetF ,

PL( n | Γ ` τ ) = C(Ωn, Ω)
( ∏

1≤i≤|Γ| Γ(i), τ
)

.

Seely’s categorical interpretation of the types and terms of
System F determinesΣTy

F and ΣTm
F algebra structures onU

and PL. For example, for(∀ : (∗)∗ → ∗ ) ∈ ΣTy
F , the

corresponding algebraic operation∀U : δU → U is defined
by the right adjoint toC(π1, Ω) : C(Ωn+1,Ω) → C(Ωn, Ω).
The multiplication structures of both monoidsU and PL
are given by composition. The type-in-term substitution for
σ ∈ U(n) arises asC

(〈idΩn , σ〉,Ω)
: PL(n + 1 | Γ ` τ) →

PL(n | Γ{σ} ` τ{σ}). Altogether, this yields an algebraic
model of System F.
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