
Inductive Cyclic Sharing

Data Structures

Makoto Hamana

Department of Computer Science,

Gunma University, Japan

30th, June, 2008

http://www.cs.gunma-u.ac.jp/˜hamana/

1

This Work

B How to inductively capture cylces and sharing

B Intend to apply it to functional programming

B Strongly related to

– Masahito Hasegawa,

Models of Sharing Graphs: A Categorical Semantics of let and letrec,

PhD thesis, University of Edinburgh, 1997.

2

Introduction

B Term is a convenient and concise representation of tree structures

in theoretical computer science and logics.

(i) Reasoning: structural induction

(ii) Functional programming: pattern matching,

structural decomposition/composition

(iii) Representable by inductive datatypes

(iv) Initial algebra property

B In other areas: adjacency lists, adjacency matrices, pointer structures in

C, etc. more complex, not intuitive, difficult to manage

B But ...

3

Introduction

B How about “tree-like” structures?

B How can we represent this data in functional programming?

B Give up to use pattern matching, composition, structural induction

B Not inductive
4

Introduction

Are really no inductive structures in tree-like structures?

B “Almost” a tree

5

Graph-Theoretic Observation

B Instead, regard it as

Depth-First Search tree

B DFS tree consists of 3 kinds of edges:

(i) Tree edge

(ii) Back edge

(iii) Right-to-left cross edge

B Characterise pointers for back and cross edges
6

This Work

I Cyclic Data Structures

(i) Syntax: µ-terms

(ii) Implementation: nested datatypes in Haskell

(iii) Semantics: domains and traced categories

(iv) Application: A syntax for Arrows with loops

B Cyclic Sharing Data Structures

(i) New pointer notation

(ii) Translation: ⇒ Equational term graphs ⇒ Cyclic sharing theories

(iii) Semantics: cartesian-center traced monoidal categories

(iv) Graph algorithms: SCC

7

I. Cyclic Data Structures

8

Idea

B A syntax of fixpoint expressions by µ-terms is widely used

B Consider the simplest case: cyclic lists

B This is representable by
µx.cons(5, cons(6, x))

B But: not the unique representation

µx.µy.cons(5, cons(6, x))

µx.cons(5, µy.cons(6, µz.x))

µx.cons(5, cons(6, µx.cons(5, cons(6, x))))

All are the same in the equational theory of µ-terms.

B Thus: structural induction is not available

9

Idea

B µ-term may have free variable considered as a dangling pointer

cons(6, x)

“incomplete” cyclic list

B To obtain the unique representation of cyclic and incomplete cyclic lists,

always attach a µ-binder in front of cons:

µx1.cons(5, µx2.cons(6, x1))

B seen as uniform addressing of cons-cells

B No axioms

B Inductive

B Initial algebra for abstract syntax with variable binding

by Fiore, Plotkin and Turi [1999]
10

Cyclic Signature and Syntax

B Cyclic signature Σ

nil(0), cons(m, −)(1) for each m ∈ Z

x, y ` x

x ` µy.cons(6, x)
` µx.cons(5, µy.cons(6, x))

B De Bruijn notation:

` cons(5, cons(6, ↑2))

B Construction rules:

1 ≤ i ≤ n

n `↑i

f (k) ∈ Σ n + 1 ` t1 · · · n + 1 ` tk

n ` f(t1, . . . , tk)

11

Cyclic Lists as Initial Algebra

B F: category of finite cardinals and all functions between them

B Def. A binding algebra is an algebra of signature functor on SetF

B E.g. the signature functor Σ : SetF → SetF for cyclic lists

ΣA = 1 + Z× A(− + 1)

B The presheaf of variables: V(n) = n

B The initial V+Σ-algebra (C, in : V+ΣC → C)

C(n) ∼= n + 1 + Z× C(n + 1) for each n ∈ N

B C(n): represents the set of all incomplete cyclic lists possibly containing

free variables {1, . . . , n}
B C(0): represents the set of all complete (i.e. no dangling pointers) cyclic

lists

12

Cyclic Lists as Initial Algebra

B Examples

↑2 ∈ C(2)

cons(6, ↑2) ∈ C(1)

cons(5, cons(6, ↑2)) ∈ C(0)

B Destructor:

tail : C(n) → C(n + 1)

tail(cons(m, t)) = t

B Idioms in functional programming: map, fold

B How to follow a pointer: Huet’s Zipper

B But: following a pointer ↑n needs n-step backward Zipper operations

B One of the benefits of pointer is efficiency

– want: constant time dereference
13

Cyclic Data Structures as Nested Datatypes

B Diving into Haskell

B Implementation: Inductive datatype indexed by natural numbers

data Zero

data Incr n = One | S n

data CList n = Ptr n

| Nil

| Cons Int (CList (Incr n))

B cf. C(n) ∼= n + 1 + Z× C(n + 1)

B Examples

S One :: CList (Incr (Incr Zero))
Cons 6 (S One) :: CList (Incr Zero)
Cons 5 (Cons 6 (S One)) :: CList Zero

14

Cyclic Lists to Haskell’s Internally Cyclic Lists

B Translation

tra :: CList n → [[Int]] → [Int]
tra Nil ps = []
tra (Cons a as) ps = let x = a : (tra as (x : ps)) in x

tra (Ptr i) ps = nth i ps

B The accumulating parameter ps keeps a newly introduced pointer x by let

B Example
tra (Cons 5 (Cons 6 (Ptr (S One)))) []
⇒ 5 : 6 : 5 : 6 : 5 : 6 : 5 : 6 : 5 : 6 : · · ·

B Makes a true cycle in the heap memory, due to graph reduction

B Constant time dereference

B Better: semantic explanation – to more nicely understand tra
15

Domain-theoretic interpretation

B Semantics of cyclic structures has been traditionally given as their infinite

expansion in a cpo

B Fits into nicely our algebraic setting

B Cppo⊥: cpos and strict continuous functions

Cppo : cpos and continuous functions

16

Domain-theoretic interpretation

B Let Σ be the cyclic signature for lists

nil(0), cons(m, −)(1) for each m ∈ Z.

B The signature functor Σ1 : Cppo⊥ → Cppo⊥ is defined by

Σ1(X) = 1⊥ ⊕ Z⊥⊥ ⊗ X⊥

B The initial Σ1-algebra D is a cpo of all finite and infinite possibly partial

lists

B Define a clone 〈D, D〉 ∈ SetF by

〈D, D〉n = [Dn, D] = Cppo(Dn, D)

B The least fixpoint operator in Cppo: fix(F) =
⊔

i∈N F i(⊥)

B 〈D, D〉 can be a V+Σ-algebra

[[−]] : C −→ 〈D, D〉.
17

Domain-theoretic interpretation

B The unique homomorphism in SetF

[[−]] : C −→ 〈D, D〉
[[nil]]n = λΘ.nil

[[µx.cons(m, t)]]n = λΘ.fix(λx.consD(m, [[t]]n+1(Θ, x))

[[x]]n = λΘ.πx(Θ)

B Example of interpretation

[[µx.cons(5, µy.cons(6, x))]]0(ε) = fix(λx.consD(5, fix(λy.consD(6, πx(x, y)))

= fix(λx.consD(5, consD(6, x))

= cons(5, cons(6, cons(5, cons(6, . . .

tra :: CList a → [[Int]] → [Int]

tra Nil ps = []

tra (Cons a as) ps = let x = a : (tra as (x : ps)) in x

tra (Ptr i) ps = nth i ps

18

Interpretation in traced cartesian categories

B A more abstract semantics for cyclic structures in terms of

traced symmetric monoidal categories [Hasegawa PhD thesis, 1997]

B Let C be an arbitrary cartesian category having a trace operator Tr

[[n ` i]] = πi

[[n ` µx.f(t1, . . . , tk)]] = TrD(∆ ◦ [[f]]Σ ◦ 〈[[n + 1 ` t1]], . . . , [[n + 1 ` t1]]〉)

B This categorical interpretation is the unique homomorphism

[[−]] : C −→ 〈D, D〉

to a V+Σ-algebra of clone 〈D, D〉 defined by 〈D, D〉n = C(Dn, D)

B Examples

(i) C = cpos and continuous functions

(ii) C = Freyd category generated by Haskell’s Arrows

19

Application: A New Syntax for Arrows

B Arrows [Hughes’00] are a programming concept in Haskell to make a

program involving complex “wiring”-like data flows easier

B Example: a counter circuit

newtype SeqMap b c = SM (Seq b -> Seq c)

data Seq b = SCons b (Seq b)

counter :: SeqMap Int Int

counter = proc reset -> do -- Paterson’s notation [ICFP’01]

rec output <- returnA -< if (reset==1) then 0 else next

next <- delay 0 -< output+1

returnA -< output
20

Application: A New Syntax for Arrows

B Paterson defined an Arrow with a loop operator called ArrowLoop

class Arrow _A => ArrowLoop _A where

loop :: _A (b,d) (c,d) -> _A b c

B Arrow (or, Freyd category)

is a cartesian-center premonoidal category [Heunen, Jacobs, Hasuo’06]

B ArrowLoop

is a cartesian-center traced premonoidal category [Benton, Hyland’03]

B Cyclic sharing theory is interpreted

in a cartesian-center traced monoidal category [Hasegawa’97]

B What happens when cyclic terms are interpreted as Arrows with loops?

21

Application: A New Syntax for Arrows

B Term syntax for ArrowLoop

B Example: a counter circuit

B Intended computation

µx.Cond(reset, Const0, Delay0(Inc(x)))

where reset is a free variable

B term :: Syntx (Incr Zero)

term = Cond(Ptr(S One),Const0,Delay0(Inc(Ptr(S(S One)))))

22

Translation from cyclic terms to Arrows with loops

tl :: (Ctx n, ArrowSigStr _A d) => Syntx n -> _A [d] d

tl (Ptr i) = arr (\xs -> nth i xs)

tl (Const0) = loop (arr dup <<< const0 <<< arr (\(xs,x)->()))

tl (Inc t) = loop (arr dup <<< inc <<< tl t <<< arr supp)

tl (Delay0 t) = loop (arr dup <<< delay0 <<< tl t <<< arr supp)

tl (Cond (s,t,u)) = loop (arr dup <<< cond <<< arr(\((x,y),z)->(x,y,z))

<<< (tl s &&& tl t) &&& tl u <<< arr supp)

B This is the same as Hasegawa’s interpretation of cyclic sharing structures

B Define an Arrow by term

term = Cond(Ptr(S One),Const0,Delay0(Inc(Ptr(S(S One)))))

counter’ :: SeqMap Int Int

counter’ = tl term <<< arr (\x->[x])

23

Simulation of circuit

B Let test_input be

(1) reset (by the signal 1),

(2) count +1 (by the signal 0),

(3) reset,

(4) count +1,

(5) count +1, . . .

test_input = [1,0,1,0,0,1,0,1]

run1 = partRun counter test_input -- original

run2 = partRun counter’ test_input -- cyclic term

In Haskell interpreter

> run1

[0,1,0,1,2,0,1,0]

> run2

[0,1,0,1,2,0,1,0]

24

Summary

B Inductive characterisation of cyclic sharing terms

B Semantics

B Implementations in Haskell

B Good connections between semantics and functional programming

(i) Cartesian-center traced monoidal categories [Hasegawa]

I Cyclic Sharing Data Structures with constant time dereference

(ii) Monads [Moggi] I Effects [Wadler]

(iii) Freyd categories [Power, Robinson] I Arrows [Hughes]

——————————————–

B Cyclic Sharing Data Structures – more challenging, more interesting

(i) New pointer notation

(ii) Translation: ⇒ Equational term graphs ⇒ Cyclic sharing theories

(iii) Semantics: cartesian-center traced monoidal categories

(iv) Graph algorithms: SCC
25

II. Cyclic Sharing Data Structures

26

Cyclic Sharing Data Structures

B Sharing via cross edge

B Term
µx.bin(µy1.bin(µz.bin(↑x, lf(6)), ↙1↑y1), lf(9)) : B(B(B(P, L), P), L)

B New construct: pointer ↙p↑x (p:position, in addition to ↑x)

B Inductive type indexed by shape trees

B Exactly implemented by GADT in Haskell
27

Translation of Cyclic Sharing Terms

B Semantics

B To get constant time dereference

B Translations

Cyclic Sharing
Terms

attpos// Cyclic Sharing
Terms with pos.

tre // ETG
trc // CST

Has.// (F : C → S)

B Cartesian-center traced symmetric monoidal category (F : C → Hask)

B Example of translation

28

µx.bin(µy1.bin(µz.bin(↑x, lf(6)), ↙1↑y1), lf(9))
de Br.= bin(bin(bin(↑3, lf(6)), ↙1↑1), lf(9))
attpos7→ binε(bin1(bin11(↑1113, lf112(6)), ↙1↑12 1), lf2(9))

tre7→

{ε | ε = bin(1, 2)

1 = bin(11, 12)

11 = bin(111, 112)

12 = 11

111 = ε

112 = lf(6)

2 = lf(9)}
trc7→ letrec (ε, 1, 11, 12, 111, 112, 2)

= (bin(1, 2), bin(1, 12), bin(111, 112), 11, ε, lf(6), lf(9)) in ε

Hasegawa7→
F(∆); (id ⊗ TrD7

(F∆7; ([[ε, 1, . . . ` bin(1, 2)]]⊗
[[ε, 1, . . . ` bin(11, 12)]]⊗
· · ·); F∆)); Fπ1

29

Graph Algorithm: Strong Connected Components

30

Graph Algorithm: Computing SCC

Strong Connected Components

B The number described in a node is a DFS number.

B The number labelled outside of a node is lowlink.

B A gray node is the root of a scc

31

SCC: Tarjan’s Algorithm in Haskell

scc :: HTree -> [[Lab]]

scc t = sccs

where (lowlink, node_stack, sccs) = visit t [] []

visit :: HTree -> [Lab] -> [[Lab]] -> (Lab,[Lab],[[Lab]])

visit (HLf i e) vs out

= (i, vs, [i]:out)

visit (HBin i s1 s2) vs out

= if lowlink == i

then (lowlink, dropWhile (>=i) vs’’,

takeWhile (>=i) vs’’:out2)

else (lowlink, vs’’, out2)

where (k1, vs’, out1) = visit s1 (i:vs) out

(k2, vs’’,out2) = visit s2 vs’ out1

lowlink = minimum [k1, k2, i]

visit (HCross i t) vs out

= if (notElem j vs)

then (i, vs, [i]:out)

else (min i j, i:vs, out)

where j = lab t -- (*) dereference in O(1)

32

SCC: Tarjan’s Algorithm – procedural implementation

Input: Graph G = (V, E), Start node v0

index = 0 // DFS node number counter

S = empty // An empty stack of nodes

tarjan(v0) // Start a DFS at the start node

procedure tarjan(v)

v.index = index // Set the depth index for v

v.lowlink = index++

S.push(v) // Push v on the stack

forall (v, v’) in E do // Consider successors of v

if (v’.index is undefined) // Was successor v’ visited?

tarjan(v’) // Recurse

v.lowlink = min(v.lowlink, v’.lowlink)

elseif (v’ in S) // Is v’ on the stack?

v.lowlink = min(v.lowlink, v’.index)

if (v.lowlink == v.index) // Is v the root of an SCC?

print "SCC:"

repeat

v’ = S.pop

print v’

until (v’ == v)

33

