Inductive Cyclic Sharing Data Structures

Makoto Hamana

Department of Computer Science, Gunma University, Japan

30th, June, 2008
http://www.cs.gunma-u.ac.jp/~hamana/

This Work

\triangleright How to inductively capture cylces and sharing
\triangleright Intend to apply it to functional programming

- Strongly related to
- Masahito Hasegawa,

Models of Sharing Graphs: A Categorical Semantics of let and letrec, PhD thesis, University of Edinburgh, 1997.

Introduction

\triangleright Term is a convenient and concise representation of tree structures in theoretical computer science and logics.
(i) Reasoning: structural induction
(ii) Functional programming: pattern matching, structural decomposition/composition
(iii) Representable by inductive datatypes
(iv) Initial algebra property
\triangleright In other areas: adjacency lists, adjacency matrices, pointer structures in
C, etc. more complex, not intuitive, difficult to manage
\triangleright But...

Introduction

\triangleright How about "tree-like" structures?

\triangleright How can we represent this data in functional programming?
\triangleright Give up to use pattern matching, composition, structural induction
\triangleright Not inductive

Introduction

Are really no inductive structures in tree-like structures?

- "Almost" a tree

Graph-Theoretic Observation

\triangleright Instead, regard it as

\triangleright DFS tree consists of 3 kinds of edges:
(i) Tree edge
(ii) Back edge
(iii) Right-to-left cross edge
\triangleright Characterise pointers for back and cross edges

This Work

- Cyclic Data Structures
(i) Syntax: μ-terms
(ii) Implementation: nested datatypes in Haskell
(iii) Semantics: domains and traced categories
(iv) Application: A syntax for Arrows with loops
\triangleright Cyclic Sharing Data Structures
(i) New pointer notation
(ii) Translation: \Rightarrow Equational term graphs \Rightarrow Cyclic sharing theories
(iii) Semantics: cartesian-center traced monoidal categories
(iv) Graph algorithms: SCC

I. Cyclic Data Structures

Idea

\triangleright A syntax of fixpoint expressions by $\boldsymbol{\mu}$-terms is widely used
\triangleright Consider the simplest case: cyclic lists

\triangleright This is representable by

$$
\mu x . \operatorname{cons}(5, \operatorname{cons}(6, x))
$$

\triangleright But: not the unique representation

```
\mux.\muy.cons(5, cons(6, x))
\mux.cons(5, \muy.cons(6, \muz.x))
\mux.cons(5, cons(6, \mux.cons(5, cons(6, x))))
```

All are the same in the equational theory of μ-terms.
\triangleright Thus: structural induction is not available

Idea

$\triangleright \mu$-term may have free variable considered as a dangling pointer

$$
\operatorname{cons}(6, x)
$$

"incomplete" cyclic list
\triangleright To obtain the unique representation of cyclic and incomplete cyclic lists, always attach a μ-binder in front of cons:

$$
\mu x_{1} \cdot \operatorname{cons}\left(5, \mu x_{2} \cdot \operatorname{cons}\left(6, x_{1}\right)\right)
$$

\triangleright seen as uniform addressing of cons-cells
\triangleright No axioms
\triangleright Inductive
\triangleright Initial algebra for abstract syntax with variable binding by Fiore, Plotkin and Turi [1999]

Cyclic Signature and Syntax

\triangleright Cyclic signature $\boldsymbol{\Sigma}$

$$
\begin{aligned}
\text { nil }^{(0)}, & \operatorname{cons}(m,-)^{(1)} \quad \text { for each } m \in \mathbb{Z} \\
& \frac{x, y \vdash x}{\vdash \vdash \mu \cdot \operatorname{cons}(5, \mu y \cdot \operatorname{cons}(6, x))}
\end{aligned}
$$

\triangleright De Bruijn notation:

$$
\vdash \operatorname{cons}(5, \operatorname{cons}(6, \uparrow 2))
$$

\triangleright Construction rules:

$$
\frac{1 \leq i \leq n}{n \vdash \uparrow i} \quad \frac{f^{(k)} \in \Sigma \quad n+1 \vdash t_{1} \cdots n+1 \vdash t_{k}}{n \vdash f\left(t_{1}, \ldots, t_{k}\right)}
$$

Cyclic Lists as Initial Algebra

$\triangleright \mathbb{F}$: category of finite cardinals and all functions between them
\triangleright Def. A binding algebra is an algebra of signature functor on Set $^{\mathbb{F}}$
\triangleright E.g. the signature functor $\boldsymbol{\Sigma}:$ Set $^{\mathbb{F}} \rightarrow$ Set $^{\mathbb{F}}$ for cyclic lists

$$
\Sigma A=1+\mathbb{Z} \times A(-+1)
$$

\triangleright The presheaf of variables: $\mathbf{V}(n)=n$
\triangleright The initial $\mathrm{V}+\Sigma$-algebra $(C$, in $: \mathrm{V}+\Sigma C \rightarrow C)$

$$
C(n) \cong n+1+\mathbb{Z} \times C(n+1) \quad \text { for each } n \in \mathbb{N}
$$

$\triangleright C(n)$: represents the set of all incomplete cyclic lists possibly containing free variables $\{1, \ldots, n\}$
$\triangleright \boldsymbol{C}(0)$: represents the set of all complete (i.e. no dangling pointers) cyclic lists

Cyclic Lists as Initial Algebra

\triangleright Examples

$$
\begin{aligned}
\uparrow 2 & \in C(2) \\
\operatorname{cons}(6, \uparrow 2) & \in C(1) \\
\operatorname{cons}(5, \operatorname{cons}(6, \uparrow 2)) & \in C(0)
\end{aligned}
$$

\triangleright Destructor:

$$
\begin{aligned}
& \text { tail }: C(n) \rightarrow C(n+1) \\
& \operatorname{tail}(\operatorname{cons}(m, t))=t
\end{aligned}
$$

\triangleright Idioms in functional programming: map, fold
\triangleright How to follow a pointer: Huet's Zipper
\triangleright But: following a pointer $\uparrow \boldsymbol{n}$ needs \boldsymbol{n}-step backward Zipper operations
\triangleright One of the benefits of pointer is efficiency

- want: constant time dereference

Cyclic Data Structures as Nested Datatypes

\triangleright Diving into Haskell
\triangleright Implementation: Inductive datatype indexed by natural numbers

> data Zero $\begin{aligned} \text { data Incr } \boldsymbol{n} & =\text { One |S } n \\ \text { data CList } \boldsymbol{n} & =\text { Ptr } \boldsymbol{n} \\ & \mid \text { Nil } \\ & \mid \text { Cons Int (CList (Incr } n))\end{aligned}$
$\triangleright c f$.
$C(n) \cong n+1+\mathbb{Z} \times C(n+1)$
\triangleright Examples
S One
Cons 6 (S One)
:: CList (Incr (Incr Zero))
Cons 5 (Cons 6 (S One)) :: CList Zero

Cyclic Lists to Haskell’s Internally Cyclic Lists

\triangleright Translation

```
tra :: CList \(n \rightarrow[[\) Int \(]] \rightarrow[\) Int \(]\)
tra Nil \(\quad\) ps \(=\) []
tra (Cons \(a \operatorname{as}) p s=\) let \(x=a:(\operatorname{tra} a s(x: p s))\) in \(x\)
tra (Ptr \(i) \quad p s=\) nth \(i p s\)
```

\triangleright The accumulating parameter $\boldsymbol{p s}$ keeps a newly introduced pointer \boldsymbol{x} by let
\triangleright Example

tra (Cons 5 (Cons $6(P \operatorname{tr}(S$ One)))) []
$\Rightarrow 5: 6: 5: 6: 5: 6: 5: 6: 5: 6: .$.
\triangleright Makes a true cycle in the heap memory, due to graph reduction
\triangleright Constant time dereference
\triangleright Better: semantic explanation - to more nicely understand tra

Domain-theoretic interpretation

\triangleright Semantics of cyclic structures has been traditionally given as their infinite expansion in a cpo
\triangleright Fits into nicely our algebraic setting
\triangleright Cppo $_{\perp}$: cpos and strict continuous functions Cppo: cpos and continuous functions

Domain-theoretic interpretation

\triangleright Let $\boldsymbol{\Sigma}$ be the cyclic signature for lists

$$
\text { nil }^{(0)}, \quad \operatorname{cons}(m,-)^{(1)} \quad \text { for each } m \in \mathbb{Z}
$$

\triangleright The signature functor $\boldsymbol{\Sigma}_{\mathbf{1}}: \mathbf{C p p o}_{\perp} \rightarrow \mathbf{C p p o}_{\perp}$ is defined by

$$
\Sigma_{1}(X)=1_{\perp} \oplus \mathbb{Z}_{\perp \perp} \otimes X_{\perp}
$$

\triangleright The initial $\boldsymbol{\Sigma}_{\mathbf{1}}$-algebra \boldsymbol{D} is a cpo of all finite and infinite possibly partial lists
\triangleright Define a clone $\langle\boldsymbol{D}, \boldsymbol{D}\rangle \in \boldsymbol{S e t}^{\mathbb{F}}$ by

$$
\langle D, D\rangle_{n}=\left[D^{n}, D\right]=\operatorname{Cppo}\left(D^{n}, D\right)
$$

\triangleright The least fixpoint operator in Cppo: $\operatorname{fix}(\boldsymbol{F})=\bigsqcup_{i \in \mathbb{N}} \boldsymbol{F}^{\boldsymbol{i}}(\perp)$
$\triangleright\langle\boldsymbol{D}, \boldsymbol{D}\rangle$ can be a $\mathbf{V}+\boldsymbol{\Sigma}$-algebra

$$
\llbracket-\rrbracket: C \longrightarrow\langle D, D\rangle .
$$

Domain-theoretic interpretation

\triangleright The unique homomorphism in Set $^{\mathbb{F}}$

$$
\begin{aligned}
\llbracket-\rrbracket: C & \longrightarrow\langle D, D\rangle \\
\llbracket \text { nil } \rrbracket_{n} & =\lambda \Theta . \text { nil } \\
\llbracket \mu x . \operatorname{cons}(m, t) \rrbracket_{n} & =\lambda \Theta \cdot \mathrm{fix}\left(\lambda x . \operatorname{cons}^{D}\left(m, \llbracket t \rrbracket_{n+1}(\Theta, x)\right)\right. \\
\llbracket x \rrbracket_{n} & =\lambda \Theta \cdot \pi_{x}(\Theta)
\end{aligned}
$$

\triangleright Example of interpretation

$$
\begin{aligned}
\llbracket \mu x . \operatorname{cons}(5, \mu y . \operatorname{cons}(6, x)) \rrbracket_{0}(\epsilon) & =\operatorname{fix}\left(\lambda x \cdot \operatorname { c o n s } ^ { D } \left(5, \operatorname{fix}\left(\lambda y \cdot \operatorname{cons}^{D}\left(6, \pi_{x}(x, y)\right)\right)\right.\right. \\
& =\operatorname{fix}\left(\lambda x \cdot \operatorname{cons}^{D}\left(5, \operatorname{cons}^{D}(6, x)\right)\right. \\
& =\operatorname{cons}(5, \operatorname{cons}(6, \operatorname{cons}(5, \operatorname{cons}(6, \ldots
\end{aligned}
$$

```
tra :: CList \(a \rightarrow[[\) Int ]] \(\rightarrow\) [Int]
tra Nil ps = []
tra (Cons \(a \operatorname{as}) p s=\) let \(x=a:(\operatorname{tra} a s(x: p s))\) in \(x\)
tra \((\operatorname{Ptr} i) \quad p s=\) nth \(i p s\)
```


Interpretation in traced cartesian categories

\triangleright A more abstract semantics for cyclic structures in terms of traced symmetric monoidal categories [Hasegawa PhD thesis, 1997]
\triangleright Let \mathcal{C} be an arbitrary cartesian category having a trace operator Tr

$$
\begin{aligned}
\llbracket n \vdash i \rrbracket & =\pi_{i} \\
\llbracket n \vdash \mu x . f\left(t_{1}, \ldots, t_{k}\right) \rrbracket & =\operatorname{Tr}^{D}\left(\Delta \circ \llbracket f \rrbracket_{\Sigma} \circ\left\langle\llbracket n+1 \vdash t_{1} \rrbracket, \ldots, \llbracket n+1 \vdash t_{1} \rrbracket\right\rangle\right)
\end{aligned}
$$

\triangleright This categorical interpretation is the unique homomorphism

$$
\llbracket-\rrbracket: C \longrightarrow\langle D, D\rangle
$$

to a $\mathrm{V}+\boldsymbol{\Sigma}$-algebra of clone $\langle\boldsymbol{D}, \boldsymbol{D}\rangle$ defined by $\langle\boldsymbol{D}, \boldsymbol{D}\rangle_{n}=\mathcal{C}\left(D^{n}, D\right)$
\triangleright Examples
(i) $\mathcal{C}=$ cpos and continuous functions
(ii) $\mathcal{C}=$ Freyd category generated by Haskell's Arrows

Application: A New Syntax for Arrows

\triangleright Arrows [Hughes'00] are a programming concept in Haskell to make a program involving complex "wiring"-like data flows easier
\triangleright Example: a counter circuit


```
newtype SeqMap b c = SM (Seq b -> Seq c)
data Seq b = SCons b (Seq b)
counter :: SeqMap Int Int
counter = proc reset -> do -- Paterson's notation [ICFP'01]
    rec output <- returnA -< if (reset==1) then O else next
        next <- delay 0 -< output+1
    returnA -< output
```


Application: A New Syntax for Arrows

\triangleright Paterson defined an Arrow with a loop operator called ArrowLoop
class Arrow _A => ArrowLoop _A where loop :: _A (b,d) (c,d) -> _A b c
\triangleright Arrow (or, Freyd category)
is a cartesian-center premonoidal category [Heunen, Jacobs, Hasuo'06]
\triangleright ArrowLoop
is a cartesian-center traced premonoidal category [Benton, Hyland'03]
\triangleright Cyclic sharing theory is interpreted in a cartesian-center traced monoidal category [Hasegawa'97]
\triangleright What happens when cyclic terms are interpreted as Arrows with loops?

Application: A New Syntax for Arrows

\triangleright Term syntax for ArrowLoop
\triangleright Example: a counter circuit

\triangleright Intended computation

$$
\mu x . \text { Cond }(\text { reset, Const0, Delay0 }(\operatorname{Inc}(x)))
$$

where reset is a free variable
\triangleright term : : Syntx (Incr Zero)
term $=\operatorname{Cond}(\operatorname{Ptr}(S$ One $)$, Const0, Delay0 $(\operatorname{Inc}(\operatorname{Ptr}(S(S$ One) $))))$

Translation from cyclic terms to Arrows with loops

```
tl :: (Ctx n, ArrowSigStr _A d) => Syntx n -> _A [d] d
tl (Ptr i) = arr (\xs -> nth i xs)
tl (Const0) = loop (arr dup <<< const0 <<< arr (\(xs,x)->()))
tl (Inc t) = loop (arr dup <<< inc <<< tl t <<< arr supp)
tl (Delay0 t) = loop (arr dup <<< delay0 <<< tl t <<< arr supp)
tl (Cond (s,t,u)) = loop (arr dup <<< cond <<< arr (\((x,y),z)->(x,y,z))
    <<< (tl s &&& tl t) &&& tl u <<< arr supp)
```

\triangleright This is the same as Hasegawa's interpretation of cyclic sharing structures
\triangleright Define an Arrow by term

```
term = Cond(Ptr(S One),Const0,Delay0(Inc(Ptr(S(S One)))))
```

counter' : : SeqMap Int Int
counter' = tl term <<< arr ($\backslash \mathrm{x}->[\mathrm{x}]$)

Simulation of circuit

- Let test_input be
(1) reset (by the signal 1),
(2) count +1 (by the signal 0),
(3) reset,
(4) count +1 ,
(5) count $+1, \ldots$

```
test_input = [1,0,1,0,0,1,0,1]
run1 = partRun counter test_input -- original
run2 = partRun counter' test_input -- cyclic term
```

In Haskell interpreter
> run1
$[0,1,0,1,2,0,1,0]$
> run2
$[0,1,0,1,2,0,1,0]$

Summary

\triangleright Inductive characterisation of cyclic sharing terms
\triangleright Semantics
\triangleright Implementations in Haskell
\triangleright Good connections between semantics and functional programming
(i) Cartesian-center traced monoidal categories [Hasegawa]

- Cyclic Sharing Data Structures with constant time dereference
(ii) Monads [Moggi] Effects [Wadler]
(iii) Freyd categories [Power, Robinson] Arrows [Hughes]
\triangleright Cyclic Sharing Data Structures - more challenging, more interesting
(i) New pointer notation
(ii) Translation: \Rightarrow Equational term graphs \Rightarrow Cyclic sharing theories
(iii) Semantics: cartesian-center traced monoidal categories
(iv) Graph algorithms: SCC

II. Cyclic Sharing Data Structures

Cyclic Sharing Data Structures

\triangleright Sharing via cross edge

\triangleright Term
$\mu x \cdot \operatorname{bin}\left(\mu y_{1} \cdot \operatorname{bin}\left(\mu z \cdot \operatorname{bin}(\uparrow x, \operatorname{If}(6)), \swarrow 1 \uparrow y_{1}\right), \operatorname{If}(9)\right): B(B(B(P, L), P), L)$
\triangleright New construct: pointer $\swarrow \boldsymbol{p} \uparrow \boldsymbol{x} \quad(\boldsymbol{p}$: position, in addition to $\uparrow \boldsymbol{x})$
\triangleright Inductive type indexed by shape trees
\triangleright Exactly implemented by GADT in Haskell

Translation of Cyclic Sharing Terms

\triangleright Semantics
\triangleright To get constant time dereference
\triangleright Translations
$\underset{\text { Terms }}{\text { Cyclic Sharing }} \xrightarrow{\text { attpos }}$ Cyclic Sharing Terms with pos. $\xrightarrow{\text { tre }} \mathbf{E T G} \xrightarrow{\text { trc }} \mathbf{C S T} \xrightarrow{\text { Has. }}(\mathcal{F}: \mathcal{C} \rightarrow \mathcal{S})$
\triangleright Cartesian-center traced symmetric monoidal category ($\mathcal{F}: \mathcal{C} \rightarrow$ Hask $)$
\triangleright Example of translation
$\mu x \cdot \operatorname{bin}\left(\mu y_{1} \cdot \operatorname{bin}\left(\mu z \cdot \operatorname{bin}(\uparrow x, \operatorname{If}(6)), \swarrow 1 \uparrow y_{1}\right), \operatorname{If}(9)\right)$
de $\stackrel{\text { Br }}{ }$ attpos
$\stackrel{\text { tre }}{\longmapsto}$

$$
\begin{aligned}
\{\epsilon \mid \quad \epsilon & =\operatorname{bin}(1,2) \\
1 & =\operatorname{bin}(11,12) \\
11 & =\operatorname{bin}(111,112) \\
12 & =11 \\
111 & =\epsilon \\
112 & =\operatorname{If}(6) \\
2 & =\operatorname{If}(9)\}
\end{aligned}
$$

$\stackrel{\operatorname{trc}}{\longmapsto}$
letrec $(\epsilon, 1,11,12,111,112,2)$
$=(\operatorname{bin}(1,2), \operatorname{bin}(1,12), \operatorname{bin}(111,112), 11, \epsilon, \operatorname{If}(6), \operatorname{If}(9))$ in ϵ

$$
\begin{aligned}
\mathcal{F}(\Delta) ;\left(\operatorname { i d } \otimes \operatorname { T r } ^ { D ^ { 7 } } \left(\mathcal{F} \Delta_{7} ;(\right.\right. & \llbracket \epsilon, 1, \ldots \vdash \operatorname{bin}(1,2) \rrbracket \otimes \\
& \llbracket \epsilon, 1, \ldots \vdash \operatorname{bin}(11,12) \rrbracket \otimes
\end{aligned}
$$

Graph Algorithm: Strong Connected Components

Graph Algorithm: Computing SCC

Strong Connected Components

\triangleright The number described in a node is a DFS number.
\triangleright The number labelled outside of a node is lowlink.
\triangleright A gray node is the root of a scc

SCC: Tarjan's Algorithm in Haskell

```
scc :: HTree -> [[Lab]]
scc t = sccs
    where (lowlink, node_stack, sccs) = visit t [] []
visit :: HTree -> [Lab] -> [[Lab]] -> (Lab,[Lab],[[Lab]])
visit (HLf i e) vs out
    = (i, vs, [i]:out)
visit (HBin i s1 s2) vs out
    = if lowlink == i
            then (lowlink, dropWhile (>=i) vs'',
                                    takeWhile (>=i) vs'':out2)
            else (lowlink, vs'', out2)
    where (k1, vs', out1) = visit s1 (i:vs) out
        (k2, vs'',out2) = visit s2 vs' out1
        lowlink = minimum [k1, k2, i]
visit (HCross i t) vs out
    = if (notElem j vs)
        then ( i, vs, [i]:out)
        else (min i j, i:vs, out)
    where j = lab t -- (*) dereference in O(1)
```


SCC: Tarjan's Algorithm - procedural implementation

```
Input: Graph G = (V, E), Start node v0
index = 0 // DFS node number counter
S = empty // An empty stack of nodes
tarjan(v0) // Start a DFS at the start node
procedure tarjan(v)
    v.index = index // Set the depth index for v
    v.lowlink = index++
    S.push(v) // Push v on the stack
    forall (v, v') in E do // Consider successors of v
        if (v'.index is undefined) // Was successor v' visited?
            tarjan(v') // Recurse
            v.lowlink = min(v.lowlink, v'.lowlink)
        elseif (v' in S) // Is v' on the stack?
            v.lowlink = min(v.lowlink, v'.index)
    if (v.lowlink == v.index) // Is v the root of an SCC?
        print "SCC:"
        repeat
            v' = S.pop
            print v'
        until (v' == v)
```

