
Semantics for Interactive Higher-order

Functional-logic Programming

Makoto Hamana

Doctoral Program in Engineering
University of Tsukuba

2

Contents

1 Introduction 5
1.1 Background . 6

1.1.1 Functional Programming Languages 6
1.1.2 Interactive Functional Programming Languages 7
1.1.3 Logic Programming Languages 7
1.1.4 Algebraic Specification Languages 8
1.1.5 First-order Functional-logic Programming Languages . 8
1.1.6 Higher-order Functional-logic Programming Languages 10

1.2 Our Approach . 10
1.2.1 First-order FLP . 10
1.2.2 Interactive FLP . 12
1.2.3 Higher-order FLP . 15

2 Many-sorted First-order FLP 17
2.1 Many-sorted Conditional Equational Logic 17
2.2 Many-sorted Term Rewriting and Narrowing 22
2.3 Algebraic Semantics . 29
2.4 Many-sorted First-order FLP in Equational Logic Framework . 31
2.5 Least Complete Herbrand Model 33
2.6 Equivalence of the Validity in Models 37
2.7 Categorical Semantics . 43
2.8 Deriving Algebraic Semantics from Categorical Semantics . . . 47

3 Interactive First-order FLP 51
3.1 Computational Metalanguage 52
3.2 Categorical Semantics Based on Strong Monads 54
3.3 Interactive First-order FLP 57
3.4 The Strong Monad for Side-effects 59
3.5 A Translation from Interactive FLPs to CTRSs 60
3.6 Soundness of the Translation ◦ 65
3.7 Interaction and Solving Equations 71

4 CONTENTS

3.8 Meaning Preservation of the Translation ◦ 74

4 Simply-typed Applicative FLP 77
4.1 Simply-typed Applicative Conditional Equational Logic 77
4.2 Simply-typed Applicative FLP in Equational Logic Framework 79
4.3 Minimal Applicative Herbrand Model 82
4.4 Soundness and Completeness 85

5 Conclusion 89

Chapter 1

Introduction

The purpose of this thesis is to provide axiomatic, operational, algebraic,

and categorical semantics for interactive higher-order functional-logic pro-

gramming.

These semantics are important for the following purposes:

• the operational semantics for execution,

• the algebraic semantics for a functional interpretation,

• the axiomatic semantics for a logical interpretation,

• the categorical semantics for the formalization of interaction.

Moreover, to ensure correctness of them there must be a correspondence

between these semantics. To give correct semantics, we extend the following

three classes of functional logic programming languages in a step-by-step

manner and give semantics to these languages:

• many-sorted first-order functional-logic programming languages,

• interactive many-sorted first-order functional-logic languages,

• simply typed applicative functional-logic languages.

We formalize the syntactical and logical part of these classes of functional-

logic languages as equational logic and give their semantics. In this thesis,

we use the word “FLP” to mean “functional-logic program”.

6 1. Introduction

1.1 Background

The family of languages called declarative programming languages are dis-

tinguished by a mathematically clear semantics and have been the subject

of extensive research efforts. Languages belonging to this family are func-

tional programming languages, logic programming languages, algebraic spec-

ification languages1, and functional-logic programming languages. The last

family is the topic of this thesis. First, we briefly review the basic ideas

and semantics of these languages. Afterwards, we discuss that a functional-

logic language can be considered as an integration of a functional, logic and

algebraic specification language.

1.1.1 Functional Programming Languages

Functional programming languages are programming languages that regard

mathematical “functions”, which compute an output value from a given input

value, as “programs” and construct more complex programs by composing

functions. A functional program is similar in style to the notation of function

definitions in mathematics, e.g.

f x = x + 1.

Execution of a functional program means to compute the value of a given ex-

pression. Operational semantics of functional languages are given by (some

variants of) lambda calculus [Bar84], combinatory logic [CF58, CHS72], or

term rewriting systems [DJ90, Klo92]. More mathematical semantics are

given by denotational semantics using domain theory [Sco71, Gun92] or cat-

egorical semantics by cartesian closed categories [LS86, Cur93].

Modern functional languages like Scheme [Re91], ML, Haskell, Clean are

higher-order functional languages where functions can be used as data. From

the viewpoint of “programs as mathematical functions”, functional languages

are partitioned into two classes: pure and impure functional languages.

Impure functional languages like Scheme and ML have side-effects, such

as assignments or I/O. Although these features are necessary in realistic

programming, they are not compatible with the original idea of “programs

as mathematical functions”. For example, a function read which reads a

1Although these are not actually programming languages, they often have an evaluation
mechanism, e.g. OBJ3 [GWMF96].

1.1. Background 7

character from a file (if the file consists of mutually different characters)

returns different values whenever it is called. Since mathematical functions

should always map to a unique value for the same argument, read is not a

mathematical function in the original sense.

1.1.2 Interactive Functional Programming Languages

In pure functional languages like Haskell or Clean, functions can be regarded

as truly mathematical functions; hence, the lambda calculus, denotational

semantics, etc. directly correspond to such functional languages. Due to

such mathematical clarity and simplicity, pure functional languages have

been shown to be successful, and many arguments have been provided for

the advantages of doing without any side-effects. However, in order to write a

realistic program, it must be possible for functional programs to interact with

the outside world. A substantial amount of mechanisms have been proposed

and implemented for interaction in functional languages without destroying

the pureness of the language [Gor94]. The recent, most dominant styles of

treating interaction in pure functional languages are

• the monadic style as in Haskell [Wad90], and

• the explicit state passing style as in Clean [AP95].

These ideas have influenced our approach for handling interactions in functional-

logic programming. We discuss this subject further in Chapter 3.

1.1.3 Logic Programming Languages

Logic programming languages like PROLOG are based on Horn clause logic.

A program consists of a set of definite clauses of the following form (here −→x
denotes a sequence of variables).

P(−→x) ⇐ Q1(
−→x1), . . . , Qn(

−→xn).

Execution in logic programming means to prove an existentially quantified

predicate of the form

∃−→x . P1(
−→x1), . . . , Pn(

−→xn)

under the given program. The proof method of SLD resolution [Kow74] can

obtain all solutions constructively; so, these solutions can be considered as

8 1. Introduction

output of the program. Operational semantics of SLD resolution and declar-

ative semantics by fixed point construction are given and its correspondence

is proved. A standard textbook of This semantic correspondence is treated

in a standard textbook [Llo87].

1.1.4 Algebraic Specification Languages

Algebraic specification languages, the OBJ [GWMF96] family as a major rep-

resentative, are based on many(or order)-sorted equational logic. Although

algebraic specification languages are not programming languages, their ideas

are very similar to functional and logic programming languages. A spec-

ification consists of a set of sorted universally quantified equations of the

form

∀x : nat . f(x) = x + 1.

Under such a specification, a system of an algebraic specification language

can evaluate a term as in functional programming and can prove properties

expressed by universally quantified equations like

∀x : nat . f(x + 1) = f(x) + 1

by using term rewriting. Semantics are given by many(or order)-sorted alge-

bras and, in the so-called initial algebra approach, the quotient term algebra

is used as the standard semantics of specifications. If the specification is

built from a confluent and terminating rewrite system, it is well-known that

universally quantified equation are proved by term rewriting both terms into

the same term.

1.1.5 First-order Functional-logic Programming Lan-
guages

Functional-logic programming languages are an integration of functional and

logic programming. Examples of such languages include SLOG [Fri85],EQLOG

[GM86b], K-LEAF [GLMP91], BABEL [MNRA92], ALF [Han90], Ev [HNN+94]

and Curry [HKMN95]. For a recent overview of the field, see Hanus [Han94].

A first-order functional-logic program is given by equations of the same form

as in functional programs, like

f(x) = x + 1.

1.1. Background 9

Execution in functional-logic programming means to provide an equation

called a query and to obtain values for variables contained in the query. For

example, if we give the query

?−f(x) = 8

to a system of a functional-logic programming language, under the above

program, the system returns the answer

x 7→ 7.

We stress that modern functional-logic languages are not just an ad-hoc com-

bination of functional and logic programming languages like combining Lisp

and PROLOG. Modern functional-logic languages have a unified operational

treatment of the functional and logic part of the execution and a clear view

of mathematical semantics. Next we discuss this in detail.

Two approaches towards the semantics of first-order functional-logic lan-

guages are known. One is based on term rewriting. In this approach, a

program of a functional logic language is regarded as a conditional term

rewriting system [Kap84, BK86] and a query is considered to be the question

for convertibility between the two sides of equations in the query. To solve

the query is to find substitutions that establish such convertibility. Condi-

tional narrowing has been developed as a method for this purpose. Since

conditional narrowing is a sound and complete procedure for establishing

this convertibility [GM86a, MH94, IO94], the operational models of some ex-

isting functional logic languages are based on refined versions of conditional

narrowing, e.g., ALF and Ev.

The other approach is to extend the declarative semantics of logic pro-

gramming languages [Llo87]. This was first described by Levi et al. [LPB+87]

for their logic-plus-functional language K-LEAF. In this method, a program

defines partial functions on the complete Herbrand universe, which contains

infinite data structures, and solving a query means finding a substitution

that is a solution for the query in the least complete Herbrand model. The

languages BABEL [MNRA92] and SFL [JMMGMA92] also have semantics

in line with this approach. Sound and complete operational models for these

languages are given in [MNRA92] and [JMMGMA92].

10 1. Introduction

1.1.6 Higher-order Functional-logic Programming Lan-
guages

Recently, higher-order extensions of functional-logic languages are investi-

gated. The language SFL [GMHGRA92, JMMGMA92], which is a higher-

order extension of BABEL, has the form of applicative equations for a pro-

gram. Two semantics for SFL were proposed in [GMHGRA92]. The first one

is the “declarative semantics” of SFL, which is essentially a semantics along

the declarative approach in the semantics of first-order functional-logic lan-

guages where a slight difference is that each element in the Herbrand universe

is an applicative form. The other is the “denotational semantics” of SFL,

which is essentially also a declarative approach, but the Herbrand universe

is extended to the universe that contains function spaces, because functions

are used as data in higher-order programming.

A rewriting approach to the semantics of higher-order functional-logic

language is given in [NMI95]. In this approach, a program is an applicative

term rewriting system and the presented narrowing calculus for higher-order

functional-logic programming is shown to be sound and complete for proving

convertibility generated from applicative term rewriting, which is actually

first-order.

1.2 Our Approach

In this section, we describe our approach to the semantics of first-order, inter-

active first-order, and higher-order functional-logic languages by comparing

existing approaches in functional, logic, and specification languages.

Our main viewpoint is conditional equational logic. We use conditional

equational logic as a basic framework of semantics throughout this thesis.

Conditional equational logic [GM87, Wec92] is a subset of first-order logic,

where the equality symbol “=” is the only predicate symbol and formulae

are conditional equations.

1.2.1 First-order FLP

Our approach to the semantics for first-order functional-logic programming

is the following. A functional-logic program is a set of conditional equations

interpreted as defining functions, and a query is an existentially quantified

1.2. Our Approach 11

equation. Solving the query, which is the execution of a functional-logic

program means proving the validity of the existentially quantified equation

by obtaining a witness with respect to the functional-logic program as the

premise. Conditional narrowing is a complete proof method for valid queries.

The two approaches to the semantics of functional-logic languages are formal-

ized as two different models of a functional-logic program, which comprise a

set of conditional equations; these two models are the quotient term model

and the least complete Herbrand model. The validity of the query is shown

to be equivalent in both models; in other words, the quotient term model and

least complete Herbrand model for a functional-logic language are equivalent

(Section 2.6).

We can also straightforwardly extend the approach to higher-order functional-

logic programs. This view influences the semantics of other declarative lan-

guages, i.e. functional, logic, and algebraic specification languages. In addi-

tion, it will be relatively clear that this view actually include the semantics

of existing semantics of declarative languages. To clarify it, in the rest of

this subsection, we explain that our approach to semantics of functional-

logic languages offers us to view functional-logic programming languages as

an integration of functional, logic, and algebraic specification languages.

Functional-logic Programming as Functional Programming

A pure higher-order functional program and an evaluation of a expression

can be considered as an applicative term rewriting system [Klo92, KKSdV96,

vBSB93] and solving a restricted form of a query whose right-hand side is a

existentially quantified variable, e.g.

∃x . f 3 = x.

Functional-logic Programming as Logic Programming

If predicates are regarded as boolean functions, a logic program is considered

as a restricted form of a functional-logic program where all the equations are

only definitions of boolean functions. Asking a query in logic programming

can be done by asking an equational form of the query coinciding with the

form of equations in functional-logic programming. Namely, a logic program

and the query is expressed as the following functional-logic program

Pi(
−→x) = true ⇐ Q1(

−→x1) = true, . . . , Qn(
−→xn) = true

12 1. Introduction

and the query

∃−→x1 , . . . ,−→xn . P1(
−→x1) = ture, . . . , Pn(

−→xn) = true.

This view is not just an intuitive explanation, which is theoretically

proved that functional-logic programs and their execution is exactly a su-

perset of logic programs and their execution [SH97]. On the other hand, in

a logical sense, conditional equational logic is a subset of Horn clause logic

where the only predicate symbol is the equality symbol. As we will see above

its inclusion between the two systems (conditional equational logic ⊆ Horn

clause logic) does not actually mean an inclusion of expressive power of two

systems.

Functional-logic Programming as Algebraic Specification

Since a functional-logic program can be seen as a set of (restricted form of)

universally quantified equations, it is just an algebraic specification. There-

fore, we can apply initial algebra semantics to a functional-logic program.

Although, usually, functional-logic programming is not equipped with the

feature of proving a universally quantified equation, from the equational logic

view, it is possible to prove the universally quantified equation by using term

rewriting. Moreover in functional-logic programming, not only a universally

quantified but also an existentially quantified equation like

∃x : nat . f(x + 1) = f(x) + x

can be constructively proved by solving the query. So, we can regard this

part as an extension of algebraic specification. Of course, since the form

of algebraic specifications is wider than that of functional-logic programs

(e.g. associativity like ∀x, y, z . x + (y + z) = (x + y) + z can be included in

a specification), not all features of algebraic specification are contained in

functional-logic programming.

1.2.2 Interactive FLP

As we saw in the preceding sections, functional-logic programming contain

most features of pure functional, logic, and specification languages. However,

they does not have the features like assignment or I/O provided by impure

functional programming languages. In Chapter 3, we introduce such impure

1.2. Our Approach 13

features, which we call interaction, into first-order functional-logic program-

ming. Since a functional-logic program is a pure functional program, one may

attempt to introduce monadic or explicit state passing style into functional-

logic programming as candidates for introduction of interaction. However we

think that they do not directly fit to functional-logic programming due to

the following reasons:

• Monadic style: The monad for side-effects [Mog88] for interaction re-

quires higher-order types, namely lambda expressions are needed. But

the functional-logic programming languages considered in this thesis

do not have lambda expressions, even if they belong to higher-order

functional-logic programming languages (Chapter 4). Hence, this monadic

approach is not directly applicable tofunctional-logic programming.

• Explicit state passing style: This way is directly applicable to functional-

logic programming languages. However, a type system which ensure the

single thredness of the state passing parameter [BS93] is required. The

relationship between narrowing and this kind of type systems has not

been investigated yet. Moreover all functions having interaction must

have an extra parameter for state and therefore programs become com-

plicated.

We also note that both approaches of treating interaction are merely program-

ming styles. There is no direct semantic characterization of the interaction

part in both approaches. Actually, the semantics of a program having interac-

tion is given by the traditional semantics of pure functional programs. These

approaches indeed lead to the preservation of the properties of pure pro-

grams and the fact that the modification of the operational semantics is not

needed for interaction. However, since the constructs expressing interaction

are expanded into programs, they become complicated and understanding

their meaning is difficult, especially in the monadic style.

The monadic style proposed by Wadler [Wad90] is based on Moggi’s work

on notions of computation in categorical framework using monads. But

Wadler’s approach does not exactly match the original idea of Moggi, i.e.,

in the monadic style, Moggi’s semantics is implemented in pure functional

programs. We think that this is the reason of some complication in the use

of monads in functional programs.

Hence, in our approach, we proceed as follows: We go back to the original

idea of Moggi’s formalization of computations and follow it:

14 1. Introduction

(i) We extend the syntax of the first-order functional-logic program lan-

guage to the syntax of interactive first-order functional-logic program-

ming language expressing sequential computations by introducing let-

terms (Section 3.1).

(ii) We give a semantics of let-terms by using the monad for side-effects in

a categorical framework (Section 3.2).

Moggi gave the deduction system of the computational metalanguage, which

is an extension of many-sorted equational logic including let-terms, and

showed the soundness and completeness with respect to the categorical se-

mantics using monads. In our semantic formalization for interactive functional-

logic programming, we also use this approach; here we use the computational

metalanguage instead of many-sorted equational logic in first-order FLP.

Moggi did not give an operational semantics for the computational met-

alanguage. So our third step of introducing interaction into functional-logic

programming is the following:

(iii) We give a translation from a set of axioms of the computational meta-

language into a conditional term rewriting system.

Then, we show its soundness by considering categorical semantics and prov-

ing the implication of the provability relations between the two systems.

By these steps we can give the following semantics of interactive functional-

logic languages:

• axiomatic semantics – computational metalanguage,

• categorical semantics – monads, and

• rewriting semantics – conditional term rewriting systems (rewriting and

narrowing).

Since an interactive functional-logic program is translated into a condi-

tional term rewriting system and narrowing is a sound and complete solving

method for the convertibility of conditional term rewriting systems, narrow-

ing can be used as a sound and complete solving method for interactive

functional-logic programming.

1.2. Our Approach 15

1.2.3 Higher-order FLP

The class of higher-order functional-logic programming languages treated in

this thesis is called “simply-typed applicative functional-logic languages”,

which includes the higher-order functional-logic language SFL.

Our approach to the semantics for this class of higher-order functional-

logic programming language is a further development of both SFL’s “denota-

tional” approach [GMHGRA92] and the applicative term rewriting approach

[NMI95], which were discussed in Section 1.1.6. We treat a program as an ap-

plicative term rewriting system in the operational semantics, i.e., first-order

conditional narrowing is used to solve a higher-order query. For the alge-

braic semantics, we present first the initial model in a class of all models of

a program as the quotient of convertibility generated from applicative term

rewriting. Next, we give another model, which we call “minimal applicative

Herbrand model”. The carrier of this model contains function spaces, which

is similar to the “denotational semantics” of SFL. The important difference

compared with their semantics is that our semantics is sound and complete

for the operational model of narrowing, unlike SFL’s “denotational seman-

tics”. This desirable result comes from the minimality of the applicative

Herbrand model in our semantics defined in Section 4.4.

16 1. Introduction

Chapter 2

Many-sorted First-order FLP

In this chapter, we give the following semantics of many-sorted first-order

functional-logic programming language:

• axiomatic semantics [GM87],

• rewriting semantics [Hul80, SMI95]

• algebraic semantics:

– the quotient term model [GTW75, GM87],

– the least complete Herbrand model [LPB+87],

• categorical semantics [Cro93].

These semantics, except for the least complete Herbrand model, are already

proposed as semantics of equational logic. Since our approach is to define a

functional-logic program as a particular form of axioms of equational logic,

we point out that they also become semantics of FLP.

Then we discuss the relationship between models using the known results

(axiomatic ⇔ rewriting ⇔ the quotient term model), prove a new result (the

quotient term model ⇔ the least complete Herbrand model) and point out

the inclusion (categorical ⊇ algebraic).

2.1 Many-sorted Conditional Equational Logic

First we give syntax and a deduction system of many-sorted conditional

equational logic. The form of presentation of equational logic follows [Cro93].

18 2. Many-sorted First-order FLP

Definition 2.1.1 (Signature)

Let S be a set of sorts . An S-sorted signature Σ is a set of function symbols

together with an arity function assigning to each function symbol f a finite

sequence α1, . . . , αn and β of elements of S. This is denoted by

f : α1, . . . , αn → β

where we say that f has arity n, the source sorts are α1, . . . , αn and the

target sort is β. When n = 0, we write

f : β

and say that f is a constant symbol . A sort α is called empty if there is no

constant symbol of the sort α in Σ.

Definition 2.1.2 (Raw terms)

The raw terms are given by the following grammar:

t ::= x | k | f(t1, . . . , tn)

where x is a variable, k a constant symbol and f a function symbol of non-

zero arity n in the signature Σ.

Definition 2.1.3 (Typing)

A typing context , usually written as Γ, ∆, . . . , is a finite sequence (x1:α1, . . . , xn:αn)

of (variable,sort)-pairs, where xi’s are mutually different. If a typing context

Γ is an empty sequence, we say the null typing context , denoted by ∅. We

write Γ, x:α to indicate the result of extending Γ by assigning the sort α to

a variable x 6∈ V(Γ). We say that a raw term t has a type α, denoted by

t : α, under a typing context Γ if Γ . t : α is derivable from the following

typing rules. Such a raw term t is called a well-typed term or simply a term,

and the well-typed term under the typing context Γ . t : α a proved term.

We often use abbreviated notation “s, t : α” to mean that s : α and t : α. A

term is ground if it does not contain any variable. A term is linear if there

is no multiple occurrence of the same variable.

(variable)
Γ, x:α . x:α

(constant symbol)
Γ . k:α

k:α ∈ Σ

(first-order1 term)
Γ . t1:α1, . . . , Γ . tn:αn

Γ . f(t1, . . . , tn) : β
f : α1, . . . , αn → β ∈ Σ

2.1. Many-sorted Conditional Equational Logic 19

Notation 2.1.4

The set of variables occurring in a syntactic object e is denoted by V(e). A

sequence of syntactic objects e1, . . . , en is often abbreviated as −→ei .

Remark 2.1.5

We use a slightly different treatment of terms from the usual treatment of

terms in many-sorted (conditional) equational logic in the context of algebraic

specification [GTW75, GTW76, GM85, GM87], namely, we do not assume

that variables used in the language have pre-defined sorts. In other words,

we do not assume a global variable set indexed by sorts. Instead, we always

attach type information of variables (typing context) for terms, for example,

x : Int, y : Int . plus(x,y).

This style is widely used in the type theory [Mit96]. In a formula (equation), a

typing contexts are also used as a variable quantification. This form of terms

and equations in equational logic is suited for the following two reasons:

• to use standard categorical treatment of semantics of terms and equa-

tions [Cro93, Pit95], i.e. categorically this form is natural.

• to avoid the unsound deduction problem with respect to empty sort

interpretation in many-sorted equational-logic [GM85].

Definition 2.1.6 (Σ-algebra)

Let S be a set of sorts and Σ an S-sorted signature. A Σ-algebra is a pair

(A, ΣA), consisting of an S-indexed family A = {Aα | α ∈ S} of carrier sets

and a set ΣA = {fA : Aα1 × . . . × Aαn → Aβ | f : α1, . . . , αn → β ∈ Σ} of

operations.

Definition 2.1.7 (Homomorphism)

Let A = (A, ΣA) and B = (B, ΣB) be Σ-algebras. A homomorphism φ : A →
B is a S-indexed family of functions, φα : Aα → Bα for each sort α, such

that for each function symbol f : α1, . . . , αn → α

φ(fA(a1, . . . , an)) = fB(φα1(a1), . . . , φαn(an)).

1The terminology “first-order” used in this thesis refers to first-order functions in the
sense of functional programming, namely a function (symbol) which is over base types.
Note that it is different from the terminology “first-order” in the sense of “first-order
predicate logic”. Later we introduce higher-order FLP, but equational logic used there is
always first-order in logical sense, i.e. disallowing predicates on predicates. (Actually, “=”
is the only predicate symbol used in this thesis).

20 2. Many-sorted First-order FLP

Definition 2.1.8

The term algebra TΣ(Γ) under the typing context Γ is defined as follows:

carrier:

TΣ(Γ)α = {t | Γ . t : α} for each sort α ∈ S.

operation:

fTΣ(Γ)(t1, . . . , tn) = f(t1, . . . , tn)

for each f : α1, . . . , αn → β ∈ Σ where Γ . ti : αi for each i = 1, . . . , n. If

Γ is the null typing context, we write TΣ.

It is well-known that the ground well-typed term algebra has the following

important property, called initiality in all Σ-algebras [GTW75, GTW76].

This result induces the uniqueness of interpretation of a term in a Σ-algebra.

Theorem 2.1.9

The ground well-typed term algebra TΣ is an initial algebra in the class of all

Σ-algebras, i.e. for any Σ-algebra A, there exists a unique homomorphism

from TΣ to A, denoted by A[[]] : TΣ → A.

Definition 2.1.10 (Assignment)

Let A = (A, ΣA) be a Σ-algebra and Γ a typing context (x1 : α1, . . . , xn : αn).

An assignment θ from Γ to A, denoted by θ : Γ → A, is an S-indexed family

{θα : Xα → Aα | α ∈ S} of functions where Xα is a set of all variables

of a sort α occurring in Γ. Notice that if some carrier set Aα is the empty

set, θα is undefined as a function. In this case, we say that the assignment

θ is undefined . The assignment θ is uniquely extended to a homomorphism

θ# : TΣ(Γ) → A as follows:

θ#(x) = θ(x),

θ#(k) = kA,

θ#(f(t1, . . . , tn)) = fA(θ#(t1), . . . , θ#(tn)).

A substitution is an assignment θ : Γ → TΣ(Γ′) to a term algebra TΣ(Γ′).

We often write tθ instead of θ#(t) for the application of substitutions. A

substitution σ is often presented as the set {x1 7→ t1, . ., xn 7→ tn}, where

σ(xi) = ti for i = 1, . ., n. Let σ, τ : Γ → TΣ(Γ′). We write σ 4 τ [Γ] if there

exists a substitution ρ : Γ′ → TΣ(Γ′′) such that ρ# ◦ σ = τ .

2.1. Many-sorted Conditional Equational Logic 21

Definition 2.1.11 (Equations)

Let s:α, t:α, s1:β1, · · · , sn:βn, t1:β1, tn:βn be terms under a typing context

Γ. A formula of the form

∀Γ(s = t : α ⇐ s1 = t1:β1, · · · , sn = tn:βn)

is called a universally quantified conditional equation or simply conditional

equation. If n = 0, we simply write the formula as ∀Γ(s = t : α). If Γ is a

null typing context, we call it a ground (conditional) equation, and we denote

it by ∀∅(s = t ⇐ s1 = t1, · · · , sn = tn) or simply omit the quantification as

(s = t ⇐ s1 = t1, · · · , sn = tn). A formula of the form

∃∆(s1 = t1 : β1, · · · , sn = tn : βn)

is called an existentially quantified equation. The type information like “:α”

in equations an proved terms may be omitted if it is not important. We may

write ∀Γ . e or ∃∆ . e for quantified equations.

Definition 2.1.12 (Conditional Equational Logic)

Conditional equational logic is a deduction system consisting of the following

rules. This system is the same as that described in [GM87]. Let R be a set

of conditional equations called axioms . A theorem is an equation derived by

22 2. Many-sorted First-order FLP

these rules.

(axiom)
∀Γ(s1θ = t1θ : α1) · · · ∀Γ(snθ = tnθ : αn)

∀Γ(sθ = tθ : α)

for any axiom ∀Γ′(s = t : α ⇐ s1 = t1 : α1, · · · , sn = tn : αn) ∈ R
and for any substitution θ : Γ′ → TΣ(Γ)

(reflexivity)
Γ . t : α

∀Γ(t = t : α)

(symmetry)
∀Γ(s = t : α)

∀Γ(t = s : α)

(transitivity)
∀Γ(s = t : α) ∀Γ(t = u : α)

∀Γ(s = u : α)

(permutation)
∀Γ(s = t : α)

∀Γ′(s = t : α)
where Γ′ is a permutation of Γ

(congruence)
∀Γ(s1 = t1 : α1) · · · ∀Γ(sn = tn : αn)

∀Γ(f(t1, . . . , tn) = f(s1, . . . , sn) : β)
f : α1, . . . , αn → β ∈ Σ

(existential introduction)
∀∅(s1θ = t1θ : α1) · · · ∀∅(snθ = tnθ : αn)

∃∆(s1 = t1 : α1, · · · , sn = tn : αn)

for any substitution θ : ∆ → TΣ

In the existential introduction rule, we assume V(∆) = V(
−−−→
si = ti). We write

R ` e

for a theorem e under a set R of axioms .

2.2 Many-sorted Term Rewriting and Nar-

rowing

We define term rewriting and narrowing for axioms by regarding them as

left-to-right oriented conditional equations, i.e. conditional term rewriting

systems [Kap84, BK86]. In this section, we give some preliminary definitions

on term rewriting systems and known properties which are mainly related

with equational logic. We use standard notations and terminology of term

rewriting [DJ90]. Firstly, operations on terms are defined.

Definition 2.2.1

Let N+ be the set of positive naturals, and N∗
+ the set of all sequences on N+,

2.2. Many-sorted Term Rewriting and Narrowing 23

denoted by n1 · . . . · nk, where n1, . . . , nk ∈ N+. The set Pos(t) of positions

in a term t is inductively defined as follows:

Pos : TΣ(Γ) → P(N∗
+)

Pos(t)
def
=

{
{ε} if t is a variable or constant symbol,
{ε} ∪ {i · p|1 ≤ i ≤ n and p ∈ Pos(ti)} if t ≡ f(t1, . . . , tn).

The subterm of t at a position p, denoted by t|p is inductively defined as

follows:

t| : TΣ(Γ) × N∗
+ → TΣ(Γ)

t|p
def
=

{
t if p = ε,
(ti)|q if t ≡ f(t1, . . . , tn) and p = i · q.

If p ∈ Pos(t) then t[s]p denotes the term that is obtained from t by replacing

the subterm at the position p by the term s.

Definition 2.2.2

A context C of sort α under a typing context Γ is a well-typed term containing

a special constant ¤β of sort β. When Γ′ . t:β, the term C[t] denotes the well-

typed term obtained from C by replacing the ¤β with t, and Γ, Γ′ . C[t] : α.

Definition 2.2.3

A conditional term rewriting system (CTRS for short) is a set of axioms if

for each axiom ∀Γ(l = r ⇐ −−−→
si = ti), l is not a variable. A CTRS is called

3-CTRS [MH94] if V(l) ∪ V(
−−−→
si = ti) ⊇ V(r) for each axiom l = r ⇐ −−−→

si = ti.

We often write an axiom of CTRSs as a rewrite rule l → r ⇐ −−−→
si = ti.

Definition 2.2.4

A rewrite relation →R on terms for a CTRS R is inductively defined as

follows:

→R0

def
= ∅,

→Rn+1

def
= { (C[lθ], C[rθ]) | ∀Γ(l → r : α ⇐ s1 = t1, ..., sk = tk) ∈ R,

θ : Γ → TΣ(∆), C is a context of sort α,

siθ →∗
Rn

tiθ for every i = 1, ..., k},

→R
def
=

⋃
n∈N

→Rn .

24 2. Many-sorted First-order FLP

Here →∗
Rn

denotes the reflexive and transitive closure of →Rn . The relation

→∗
R denotes the transitive-reflexive closure of →R, →+

R denotes the transitive

closure of →R, and ↔∗
R, called conversion, denotes the transitive-reflexive-

symmetric closure of →R. We write s ←R t if t →R s.

A term s is a normal form with respect to R if there is no term t such

that s →R t. A substitution θ : (x1 : α1, . . . , xn : αn) → TΣ(Γ) is nor-

malized (resp. normalizable) if for each i = 1, . . . , n, θ(xi) is (resp. has) a

normal form. For a normalizable substitution θ, θ↓R denotes the normalized

substitution defined by θ↓R (x)
def
= a where θ(x) →!

R a.

We write s →!
R t if s →∗

R t and t is a normal form. We write s ↓R t if

there exists a term u such that s →∗
R u ←∗

R t. R is terminating if there is

no infinite rewrite sequence t1 →R t2 →R . . . and R is confluent if s ↔∗
R t

implies s ↓R t. R is orthogonal if

• left-hand sides of rules in R are linear, and

• for any two renamed versions of axioms ∀X1(l1 = r1 ⇐ c1) and ∀X2(l2 =

r2 ⇐ c2) from R such that they have no variables in common, l1|p and

l2 are not unifiable for any non-variable position p in l1, except in the

case where p = ε and the two rules differ by a variable renaming.

Remark 2.2.5

The definition of →R in Definition 2.2.4 actually generates a rewrite relation

on well-typed terms, i.e. it never generates a relation on non-well-typed

terms. This is because the following substitution lemma holds [GM87]:

(substitution)
∀Γ, x : β(s1 = s2 : α) ∀Γ(t1 = t2 : β)

∀Γ(s1[t1]x = s2[t2]x : α)

In the definition of →Rn+1 in Definition 2.2.4, the well-typedness of the ap-

plications of substitution (tθ) and context (C[t]) is guaranteed by this sub-

stitution lemma.

Definition 2.2.6

A CTRS R is called properly oriented [SMI95] if every l → r ⇐ −−−→
si = ti ∈ R

with V(l) 6⊇ V(r) satisfies

V(si) ⊆ V(l) ∪
i−1⋃
j=1

V(tj)

2.2. Many-sorted Term Rewriting and Narrowing 25

for all i ∈ {1, . . . , n}. A CTRS R is called right-stable if every l → r ⇐
−−−→
si = ti ∈ R satisfies the following conditions:

(V(l) ∪
i−1⋃
j=1

V(sj = tj) ∪ V(si)) ∩ V(ti) = ∅

and ti is either a linear constructor term (cf. Definition 2.4.1) or a ground

normal form with respect to the system obtained by removing the conditions

of rewrite rules, for every i = 1, . . . , n.

In order to use term rewriting as an operational semantics of functional-

logic programming, confluence of CTRSs is an indispensable property. A

sufficient condition to guarantee confluence of 3-CTRSs is obtained by Suzuki

et al.

Theorem 2.2.7 ([SMI95])

An orthogonal properly oriented right-stable 3-CTRS is confluent.

The conversion ↔∗
R by rewriting and provable equality coincide. Ya-

mada et al. showed that the convertibility of a class of CTRSs that contains

orthogonal properly oriented right-stable 3-CTRSs corresponds to the de-

ductive equality in one-sorted conditional equational logic. This result is

straightforwardly extended to many-sorted case. We state their result in our

setting.

Theorem 2.2.8 (Logicality of CTRSs [YALSM97])

Let R be an orthogonal properly oriented right-stable 3-CTRS. Then,

R ` ∀Γ(s = t) ⇔ s ↔∗
R t

The next result is Herbrand’s theorem for equational logic. At the end of

this section, using this result, we discuss logical meaning of narrowing.

Theorem 2.2.9 (Herbrand’s Theorem for equational logic)

Let R be a set of axioms.

R ` ∃∆(s1 = t1, . . . , sn = tn)

⇔ R ` ∀∅(s1θ = t1θ), . . . ,R ` ∀∅(snθ = tnθ) for some θ : ∆ → TΣ

Proof Obvious from the (existential introduction) deduction rule in Defini-

tion 2.1.12. ¥

26 2. Many-sorted First-order FLP

We say that θ is an answer substitution for the existentially quantified equa-

tion ∃∆(s1 = t1, . . . , sn = tn) in the above Herbrand’s theorem.

Remark 2.2.10

This form of Herbrand’s theorem for equational logic does not require the

nonempty sort assumption as in Goguen and Meseguar’s one (Corollary 24

in [GM87]) because if there is a variable in ∆ whose sort is empty the sub-

stitution θ : ∆ → TΣ is undefined. Hence R ` ∀∅(siθ = tiθ) for each i and

R ` ∃∆(s1 = t1, . . . , sn = tn) has never been derivable.

Conditional narrowing is a proof method for existentially quantified equa-

tions by obtaining answer substitutions as the solutions. Since we define it

as an operation on terms, we regard equations as terms in the narrowing

process, namely we use a term eq(s, t) for an equation s = t [MH94].

Definition 2.2.11 (eq-terms)

Let R be a CTRS over an S-sorted signature Σ. The CTRS Req under the

sort set Seq and the Seq-sorted signature Σeq is defined as follows:

• Seq = S ∪ {Bool}.

• Σeq = Σ ∪ {eqα : α, α → Bool | α ∈ S} ∪ {true : Bool}.

• Req = R∪ {∀x : α(eqα(x, x) = true) | α ∈ S}.

The introduction of eqα (we often omit the superscript α if it is clear

from the context) and true does not essentially change the equational theory

generated by R.

Proposition 2.2.12

Let R be a confluent CTRS. Then, Req is also confluent. And for any proved

terms Γ . s : α and Γ . t : α,

R ` ∀Γ(s = t : α) ⇔ eqα(s, t) →∗
Req

true.

Proof The preservation of confluence of Req is due to modularity consider-

ation; see Middeldorp [Mid90]. By confluence of R, if s ↔∗
Req

t then s ↓Req t.

Hence eqα(s, t)→∗
Reqtrue. Applying the logicality of CTRSs (Theorem 2.2.8),

we have the proposition. ¥

Definition 2.2.13 (Conditional narrowing [MH94])

Let Req be a CTRS and

2.2. Many-sorted Term Rewriting and Narrowing 27

• S1, S2 sequences of well-typed terms under a typing context ∆,

• s well-typed term under ∆, and

• T sequences of well-typed terms under ∆′.

Narrowing relation Ã on sequences of well-typed terms is defined as follows:

S1, s, S2 Ãθ,R T

if there exists

• a non-variable position u ∈ Pos(s),

• a substitution θ : Γ′, ∆ → TΣ(∆′)

• an axiom ∀Γ(l = r : α ⇐ s1 = t1 : β1, · · · , sn = tn : βn) in R (here

we rename this ∀Γ′(l′ = r′ : α ⇐ s′1 = t′1 : β1, · · · , s′n = t′n : βn) with

respect to the variable names, where ∆ and Γ′ are disjoint)

such that

• θ is a most general unifier of s|u and l′,

• T = S1θ, (s[r
′]u, eq(s′1, t

′
1), · · · , eq(s′n, t′n))θ, S2θ.

We write S1 Ã∗
θ,R Sn if there exists a narrowing derivation S1 Ãθ1,R S2 Ãθ2,R

· · · Ãθn−1,R Sn such that θ = θn−1 ◦ . . . ◦ θ2 ◦ θ1, where the domains of

substitutions are suitably extended for the composition. We often omit R in

Ãθ,R if it is clear from the context.

Conditional narrowing defined above is sound and complete for rewriting

in the sense presented below. We use the completeness result of conditional

narrowing with respect to properly oriented right-stable 3-CTRSs obtained

by Suzuki. We state his result below. We write > for a sequence consisting

only of a finite number (possibly zero) of true’s.

Theorem 2.2.14 (Soundness [MH94] and completeness [Suz98] of

conditional narrowing for rewriting)

Let R be an orthogonal properly oriented right-stable 3-CTRS and S =

28 2. Many-sorted First-order FLP

s1, . . . , sn be a sequence of well-typed terms under the typing context ∆.

Conditional narrowing is sound for rewriting by Req, i.e.

S Ã∗
θ > where θ : ∆ → TΣ(Γ)

⇒ siθ→∗
Reqtrue for each i = 1, . . . , n.

Moreover conditional narrowing is complete for rewriting: Let ∆ . s:α. For

every normalized substitution2 θ : ∆ → TΣ(Γ),

sθ→∗
Reqtrue ⇒ s Ã∗

θ′ true

where θ′ : ∆ → TΣ(Γ′) such that θ′ 4 θ[∆].

We will try to justify that narrowing is a sound and complete proof

method for existentially quantified equations. Combining Herbrand Theorem

for Equational Logic (Theorem 2.2.9) and Proposition 2.2.12, the provability

R ` ∃∆(s1 = t1, . . . , sn = tn) is equivalent to

eq(s1θ, t1θ) →!
Req

true, . . . , eq(snθ, tnθ) →!
Req

true

for some ground substitution θ : ∆ → TΣ. But we cannot immediately

apply the completeness theorem of narrowing (Theorem 2.2.14), i.e. for each

i = 1, . . . , n,

eq(siθ, tiθ) →!
Req

true ⇒ eq(si, ti) Ã∗
θ′ true

where some θ′ : ∆ → TΣ(Γ) such that θ′ 4 θ[∆]. Because to apply the com-

pleteness theorem of narrowing, the answer substitution θ in eq(siθ, tiθ) →!
Req

true must be normalized . If the CTRS Req is non-terminating3, we cannot

directly conclude the existence of a normalized answer substitution even if

R ` ∃∆(s1 = t1, . . . , sn = tn). However, the existence of a normalized answer

substitution for a particular class of provable existentially quantified equa-

tions can be shown without assuming the termination of Req. This problem

is solved in Section 2.6 by considering algebraic models of FLPs presented in

Section 2.3 and 2.5.

2Actually Suzuki state this completeness with respect to sufficiently normalizable sub-
stitutions [Suz98]. The completeness with respect to normalized substitutions is an imme-
diate consequence.

3Non-termination of a CTRS is positively used as “lazy evaluation” feature of
functional-logic programming, so we do not assume the termination of FLP.

2.3. Algebraic Semantics 29

2.3 Algebraic Semantics

In this section, we recall algebraic semantics of many-sorted conditional equa-

tional logic. For more detail, see [GM85, MG85, Wec92]. We present a model

of a set of axioms R constructed syntactically and review its property.

Definition 2.3.1 (Quotient term algebra)

Let R be a set of axioms and Γ a typing context. The equivalence relation

=R,Γ on well-typed terms is defined by s =R,Γ t if R ` ∀Γ(s = t). The

quotient term algebra TΣ(Γ)/=R,Γ is defined as follows:

carrier:

TΣ(Γ)α/=R,Γ = {t | Γ . t : α}/=R,Γ for each sort α ∈ S.

operation:

fTΣ(Γ)/=R,Γ
([t1], . . . , [tn]) = [f(t1, . . . , tn)]

for each function symbol f : α1, . . . , αn → α. Here [t] denotes the =R,Γ-

equivalence class of a well-typed term t.

We use the following notations.

Definition 2.3.2

Let R be a set of axioms and A a Σ-algebra.

(i) We write

A |= ∀Γ(s = t ⇐ −−−→
si = ti)

if for all assignments θ : Γ → A, θ#(s) = θ#(t) whenever θ#(si) =

θ#(ti) for all i = 1, · · · , n. Then we say that ∀Γ(s = t ⇐ s1 =

t1, · · · , sn = tn) is valid in a Σ-algebra A. Note that all assignments

θ : Γ → A in this definition are undefined (c.f. Definition 2.1.10), this

conditional equation is valid.

(ii) We write

A |= ∃Γ(
−−−→
si = ti)

if there exists an assignment θ : Γ → A, called witness , such that

θ#(s1) = θ#(t1), . . . , θ#(sn) = θ#(tn). Then we say that A is a model

of the equation, or ∃Γ(
−−−→
si = ti) is valid in A.

30 2. Many-sorted First-order FLP

(iii) We write

A |= R

if for all conditional equations ∀Γ(s = t ⇐ s1 = t1, · · · , sn = tn) in R,

A |= ∀Γ(s = t ⇐ s1 = t1, · · · , sn = tn). Then we say that A is a model

of R.

(iv) The set Mod(R) of all models of R is defined as follows:

Mod(R)
def
= {A | A |= R}.

(v) Let e be a universally or existentially quantified equation. We write

R |= e

if for all Σ-algebras A ∈ Mod(R),A |= e.

Soundness and completeness are stated below.

Theorem 2.3.3 (Soundness and completeness of many-sorted con-

ditional equational logic [GM87])

Let R be a set of axioms. Then TΣ(Γ)/=R,Γ∈ Mod(R) and

R ` ∀Γ(s = t) ⇔ TΣ(Γ)/=R,Γ|= ∀Γ(s = t) ⇔ R |= ∀Γ(s = t).

Especially, in case of Γ = ∅, we obtain the following. We define QR
def
=

TΣ(∅)/=R,∅.

Corollary 2.3.4

Let R be a set of axioms. Then QR ∈ Mod(R). We call QR the quotient

term model . And

R ` ∀∅(s = t) ⇔ QR |= ∀∅(s = t) ⇔ R |= ∀∅(s = t).

Moreover, the model QR has initiality in the all models Mod(R) of R.

Proposition 2.3.5 (Initiality of the quotient term model)

For any Σ-algebra A ∈ Mod(R), there exists a unique homomorphism φ :

QR → A.

Likewise a similar result holds for existentially quantified equations [GM87].

Theorem 2.3.6

Let R be axioms. Then

R ` ∃∆(
−−−→
si = ti) ⇔ R |= ∃∆(

−−−→
si = ti) ⇔ QR |= ∃∆(

−−−→
si = ti).

2.4. Many-sorted First-order FLP in Equational Logic Framework 31

2.4 Many-sorted First-order FLP in Equational

Logic Framework

In this section, we define the syntax of FLP and its solving method in the

framework of conditional equational logic. Then the quotient term model

QR is immediately a model of an FLP R.

Definition 2.4.1 (Signature)

A many-sorted first-order FLP signature (FLP signature, for short) Σ is an S-

sorted signature which is divided into two disjoint sets Con and Fun, where

Con is a set of constructor symbols and Fun is a set of defined function

symbols . A defined function symbol is called a function symbol for short,

hereafter. A term built from constructors and variables is called a constructor

term. Moreover the FLP signature must satisfies the following.

• The sort set S contains the sort Bool.

• The signature Σ contains the following symbols:

– steqα : α, α → Bool ∈ Fun,

– & : Bool, Bool → Bool ∈ Fun,

– true : Bool ∈ Con.

Definition 2.4.2 (Strict equality)

Let Σ be a FLP signature. The set STEQ of axioms is the following.

∀∅(steqα(c, c) = true) for each c : α ∈ Con,

∀−−−→xi : αi,
−−−→yi : αi(steq

α(d(x1, · · · , xn), d(y1, · · · , yn))

= steqα1(x1, y1) & · · · & steqαn(xn, yn))

for each d : α1, . . . , αn → α ∈ Con,

∀x : Bool(true & x = x).

We call an equation of the form steqα(s, t) = true a strict equation (we often

omit superscript α), where terms s and t do not contain any occurrence of

steqα.

Definition 2.4.3 (FLP)

A set R of axioms is called a many-sorted first-order FLP or simply a first-

order FLP if R satisfies the following:

32 2. Many-sorted First-order FLP

(i) R is built from a many-sorted first-order FLP signature.

(ii) R is a properly-oriented orthogonal 3-CTRS.

(iii) R contains the set STEQ of axioms.

And each equation ∀Γ(l = r ⇐ −−−→
si = ti) in R satisfies the following:

(i) l is the form f(t1, · · · , tn) where f ∈ Fun and t1, · · · , tn are constructor

terms.

(ii) All the equations s1 = t1, . . . , sn = tn are strict equations.

Note that any functional-logic program is confluent because a CTRS sat-

isfying the above conditions is an orthogonal properly oriented right-stable

3-CTRS (Theorem 2.2.7)[SMI95].

Definition 2.4.4 (Query)

Let R be a first-order FLP. A query of FLP is an existentially quantified

equation of the form

∃∆(
−−−−−−−−−−−→
steq(si, ti) = true).

Execution of FLP means to prove the query under the first-order FLP R as

axioms by obtaining answer substitutions, i.e.

R ` ∃∆(
−−−−−−−−−−−→
steq(si, ti) = true).

Let R be a first-order FLP. Now clearly we have

Req ` ∀Γ(steq(s, t) = true) ⇔ Req ` ∀Γ(eq(steq(s, t), true) = true).

We can specialize the definition of narrowing (Definition 2.2.13), which is on

eq-terms, to steq-terms for solving queries consisting of strict equations as

follows:

Definition 2.4.5 (Conditional narrowing for strict equations)

Let Req be a first-order FLP and S1, S2, T be sequences of strict equations

or true’s. The narrowing relation Ã on sequences of well-typed terms is

defined as follows: S1, s, S2 Ãθ T if there exists a non-variable position

u ∈ Pos(s), a new variant (with respect to variable-renaming) ∀Γ(l = r ⇐
steq(s1, t1) = true, · · · , steq(sn, tn) = true) of a conditional equation in R,

and a substitution θ such that

2.5. Least Complete Herbrand Model 33

• θ is a most general unifier of s|u and l,

• T = S1, (s[r]u, steq(s1, t1), · · · , steq(sn, tn))θ, S2.

We write S1 Ã∗
θ Sn if there exists a narrowing derivation S1 Ãθ1 S2 Ãθ2

· · · Ãθn−1 Sn such that θ = θn−1 ◦ . . . ◦ θ2 ◦ θ1.

Clearly this change does not affect the soundness and completeness of

narrowing for queries. We state this as a corollary to the combination of

Theorem 2.2.9 and 2.2.14.

Corollary 2.4.6

Let R be a first-order FLP.

R ` ∃∆(
−−−−−−−−−−−→
steq(si, ti) = true)

with a normalized answer substitution θ : ∆ → TΣ

⇔ steq(s1, t1), . . . , steq(sn, tn) Ã∗
θ′ > where θ′ 4 θ[∆].

Since a first-order FLP is a (particular) set of axioms, we can always

construct the quotient term model QR for any first-order FLP R.

Corollary 2.4.7

Let R be a first-order FLP. Then QR ∈ Mod(R).

We can also immediately get the following correspondence between QR

and narrowing from Theorem 2.3.6 and Corollary 2.4.6.

Corollary 2.4.8

Let R be a first-order FLP.

QR |= ∃∆ .
−−−−−−−−−−−→
steq(si, ti) = true

with a normalized answer substitution θ : ∆ → TΣ

⇔ steq(s1, t1), . . . , steq(sn, tn) Ã∗
θ′ > where θ′ 4 θ[∆].

2.5 Least Complete Herbrand Model

Levi et al. [LPB+87, GLMP91] introduced a cpo model for their single-sorted

logic plus functional language K-LEAF, called the least complete Herbrand

model. In this section we give a many-sorted version of this model by fol-

lowing their construction.

34 2. Many-sorted First-order FLP

We first give some preliminary definitions on algebraic cpos. Other basic

notions, results on cpos and domain theoretic semantics of programming

languages will also be used without comment; see, for example, [Gun92].

A partially ordered set, with order v, is called cpo if it has a least element

⊥ and any directed subset S of D has a least upper bound
⊔

S in D. Let

D be a cpo. An element z is called compact if for any directed subset S of

D, z v
⊔

S implies that there exists an element y ∈ S such that z v y. An

element x is called total if the only upper bound of x in D is x itself. D

is algebraic if for all x ∈ D, the set Sx = {z | z v x and z is compact} is

directed and x =
⊔

Sx.

We extend the signature Con to include bottom elements ⊥α for each

sort α, i.e. Con⊥
def
= Con ∪ {⊥α : α | α ∈ S}. For a partial function

f : D → E, def(f) = {d | (d, e) ∈ f} is the domain of defined points of f .

Definition 2.5.1 (Tree)

A Con⊥-tree is a partial function t : N∗
+ → Con⊥ such that, for all u ∈ N∗

+

and i ∈ N+,

(i) if u · i ∈ def(t) then u ∈ def(t),

(ii) for any u ∈ def(t), t(u) is a constructor symbol c : α1, . . . , αn → β iff

u · i ∈ def(t) and the target sort of t(u · i) is αi for each i = 1, . . . , n,

(iii) if u · n ∈ def(t) then u · 1, . . . , u · n ∈ def(t).

Definition 2.5.2

Let α be a sort. The complete Herbrand universe Hα is defined as

Hα def
= {t | t is a Con⊥-tree such that the target sort of t(ε) is α}

where ε denotes the empty sequence of N∗
+, so t(ε) denotes the root symbol

of a tree t.

Definition 2.5.3

Let A be a complete Herbrand algebra. For each α ∈ S the order vHα on

Hα is defined as:

s vHα t
def⇐⇒ s̃(x) v t̃(x) for all x ∈ N∗

+

2.5. Least Complete Herbrand Model 35

where

s̃(x)
def
=

{
⊥α if s(x) is undefined
s(x) : α otherwise

Proposition 2.5.4

For each α ∈ S, (Hα, vHα) is an algebraic cpo.

Proof Because the continuous function spaces on an algebraic cpo form an

algebraic cpo [Gun92]. ¥

Moreover, the cpo (Hα,v) has the following properties [MNRA92]:

(i) The compact elements of Hα are the Con⊥-trees having a finite number

of nodes.

(ii) The total elements of Hα are the Con⊥-trees without any occurrence

of ⊥α.

The set of ground constructor terms of a sort α, denoted by Dα, is a proper

subset of the complete Herbrand universe Hα by identifying them with the

compact and total elements of Hα, i.e. finite trees without any occurrence of

⊥α.

Definition 2.5.5 (Complete Herbrand algebra)

A Σ-algebra A is called complete Herbrand algebra if it satisfies the following:

carrier:

Hα for each sort α.

operations:

cA : Hα1 × · · · × Hαn → Hα,

cA(t1, . . . , tn) = c(t1, . . . , tn)

for each constructor symbol c : α1, . . . , αn → α ∈ Con. Note that the right-

hand side of the above definition actually denotes a Conα
⊥-tree. And for each

defined function symbol f : α1, . . . , αn → α ∈ Fun,

fA : Hα1 × · · · × Hαn → Hα,

fA is a continuous function.

For both cases, if n = 0 then these are constant functions returning an

element of Hα.

36 2. Many-sorted First-order FLP

Definition 2.5.6

Define HerbAlg as the class of all complete Herbrand algebras and the order

vHerbAlg on HerbAlg is defined as:

A vHerbAlg B def⇐⇒ fA(a1, . . . , an) vHα fB(a1, . . . , an)

for each f : α1, . . . , αn → α ∈ Σ, a1 ∈ Hα1 , . . . , an ∈ Hαn .

Proposition 2.5.7

(HerbAlg, vHerbAlg) is an algebraic cpo.

Definition 2.5.8

An operator TR : HerbAlg → HerbAlg is defined as follows:

TR(A)
def
= ({Hα | α ∈ S}, {cA | c ∈ Con} ∪ {SR(A, f) | f ∈ Fun}),

where for each f : α1, . . . , αn → α ∈ Fun and A ∈ HerbAlg, SR(A, f) : Hn →
H is defined as follows:

SR(A, f)(h1, · · · , hn)
def
=

θ#(r) if there exist ∀Γ(f(l1, · · · , ln) = r
⇐ s1 = t1, · · · , sm = tm) ∈ R

and θ : X → A,

hi = θ#(li) for every i ∈ {1, · · · , n},
θ#(si) = θ#(ti) for every i ∈ {1, · · · ,m},

⊥α otherwise.

The operator TR is a continuous function on HerbAlg. This can be proved

by showing that each construct of TR is continuous (this is straightforward

checking, but there are many tiresome things [GLMP91, Gun92]). By the

fixpoint theorem on cpos, TR has the least fixpoint expressed as follows:

HR
def
=

⊔
i∈N

TR
i(⊥HerbAlg)

where ⊥HerbAlg is the least element of HerbAlg.

HR is of course a complete Herbrand algebra and its operations are defined

as a set of appropriate continuous functions corresponding to the program

R. Namely, we have the following.

Theorem 2.5.9

HR is the least (with respect to vHerbAlg) Herbrand model of a program R.

2.6. Equivalence of the Validity in Models 37

In the model HR, the program for the strict equality has the desired

declarative meaning. More precisely, the meaning of the strict equality in

HR is a function steqα
HR

: Hα × Hα → HBool that is characterized by the

following propositions:

Proposition 2.5.10 ([LPB+87, Ham95])

Let u, v ∈ Hα. Then,

(i) steqα
HR

(u, v) = true ⇔ u =Hα v and u, v ∈ Dα,

(ii) steqα
HR

(u, v) = ⊥H ⇔ u 6=Hα v or u 6∈ Dα or v 6∈ Dα.

Clearly steqα
HR

is a strict function on both arguments, hence it is called

“strict equality”. Note that the binary relation steqα
HR

(−,−) = true is not

an equivalence relation on Hα because it is not reflexive, i.e. when u ∈ Hα

and u 6∈ Dα, steqα
HR

(u, u) = ⊥. This also affects syntactic level, namely a

proved term for Γ . t : α,

R ` ∀Γ(steq(t, t) = true)

does not hold in general. This only holds when t →!
R d and d is a constructor

term.

2.6 Equivalence of the Validity in Models

In Section 2.3 and 2.5, we saw that a first-order FLP has at least three

models: the quotient term model QR, the operational model of narrowing

and the least complete Herbrand model HR. The correspondence between

QR and narrowing has been stated in Corollary 2.4.8. In this section, we show

the correspondence between QR and HR, more precisely, the equivalence of

the validity of a query in QR and HR.

Before proving the theorem, we will discuss why the form of query is

restricted to strict equations. The following example shows that if we use a

usual equation as query, then there are cases that the validity of a query is

different in QR and in HR.

Example 2.6.1

38 2. Many-sorted First-order FLP

Assume the following signature:

Nat, NatList ∈ S,

f : Nat → Nat, ones : NatList,

ns : Nat → NatList ∈ Fun

1, 2, 3 : Nat, “::” : Nat, NatList → NatList ∈ Con

and a program

R =

∀∅(f(1) = 1 : Nat),
∀∅(ones = 1 :: ones : NatList),
∀n(ns(n) = n :: ns(n) : NatList)

 .

We can construct the models QR and HR for R. Consider the query ∃∅(f(2) =

f(3)). In HR, by fHR(2) = fHR(3) = ⊥H, the query is valid:

HR |= ∃∅(f(2) = f(3) : Nat).

But in QR, by fQR([2]) = [f(2)] = {f(2)} and fQR([3]) = [f(3)] = {f(3)}, we

have

QR 6|= ∃∅(f(2) = f(3) : Nat).

Next, we consider the query ∃∅(ones = ns(1)). By onesHR = nsHR(1) = 1 ::

1 :: 1 :: · · · (infinite list of 1s), the following holds:

HR |= ∃∅(ones = ns(1) : NatList).

But by onesQR = [ones] = {ones, 1 :: ones, 1 :: 1 :: ones, · · · } and nsQR(1) =

[ns(1)] = {ns(1), 1 :: ns(1), 1 :: 1 :: ns(1), · · · }, we have

QR 6|= ∃∅(ones = ns(1) : NatList).

Hence the validity of a query is different in QR and in HR in these examples.

Since QR is the initial model of R by Theorem 2.3.4 , the following holds:

QR |= ∃∆(s = t : α) ⇒ HR |= ∃∆(s = t : α)

However, the above example shows that when the query is a usual equation,

the reverse implication does not hold in general. The difference between the

2.6. Equivalence of the Validity in Models 39

validity of QR and HR is caused by the fact that QR does not express the

notions of partial function and infinite data structure. From this fact, it

may seem that QR is inadequate as a model of a functional-logic program.

But there is an important advantage of QR over HR, namely, having the

soundness and completeness results between QR and the operational model

of narrowing (Theorem 2.2.14). Using narrowing, the validity of a query

can be checked operationally. However, it is difficult to find a complete

and computable operational model for HR like narrowing for QR. Such

a complete operational model, which must find all solutions, may not exist,

because it would constitute a procedure that is able to compute a witness that

includes an infinite data structure. Therefore, if we use a general equation

as a query, its validity cannot always be shown operationally.

Using strict equations solves this problem, because strict equality in HR

is an equality function on constructor terms. Roughly speaking, since con-

structor terms are defined and finite data structure, the equality on undefined

values and infinite data structures need not be considered by using the strict

equality and the following equivalence can be shown:

QR |= ∃X(steq(s, t) = true) ⇔ HR |= ∃X(steq(s, t) = true).

The above statement will be proved in Theorem 2.6.7. To prove the theorem,

a few lemmas and propositions are needed.

Lemma 2.6.2

Let E1, . . . , En, F be cpos, f : E1×. . .×En → F be a continuous function and

D,D1, . . . , Dn be the sets of all compact and total elements of F,E1, . . . , En

respectively. Suppose ei is a compact element of the cpo Ei for each i =

1, . . . , n. If f(e1, . . . , en) ∈ D, then for all elements di ∈ Di with di w ei for

each i = 1, . . . n, f(d1, . . . , dn) = f(e1, . . . , en) holds.

Proof Suppose ei is a compact element of the cpo Ei for each i = 1, . . . , n

such that f(e1, . . . , en) ∈ D. Take elements di ∈ Di such that di w ei for

i = 1, . . . n. By the monotonicity of f ,

f(d1, . . . , dn) w f(e1, . . . , en).

By f(e1, . . . , en) ∈ D, f(e1, . . . , en) is a total element of the cpo F . So

f(d1, . . . , dn) = f(e1, . . . , en).

In order to prove Proposition 2.6.6, we require the notion of derived op-

erator [GTEJ77].

40 2. Many-sorted First-order FLP

Definition 2.6.3 (Derived operator)

Let A = (A, ΣA) be an Σ-algebra. Let ∆ = (x1 : α1, · · · , xn : αn) be

a typing context and ∆ . t : α a proved term. The derived operator

tA : Aα1 × . . . × Aα1 → Aα is defined as follows:

tA(a1, · · · , an)
def
= θ#(t)

where θ : ∆ → A is the assignment defined as:

θ(xi)
def
= ai for i = 1, · · · , n.

The following lemma is due to Goguen et al. [GTEJ77].

Lemma 2.6.4

Let A = (A, ΣA) be an Σ-algebra such that A is a cpo, and for all f ∈ ΣA, f

is a continuous function. Let x1 : α1, · · · , xn : αn . t : α. Then the derived

operator tA : Aα1 × . . . × Aαn → Aα is a continuous function.

The following lemma relating the denotation in HR and rewriting is

proved by J. C. González-Moreno et al. (Lemma 5.2 of [GMHGRA92]). Ac-

tually, they showed this lemma in the applicative complete Herbrand algebra.

The following lemma is a non-applicative (i.e. HR) and many-sorted version

of their lemma, which can be proved in the same way.

Lemma 2.6.5

Let R be a program, . e : α, t : α ground well-typed terms such that t ∈ Dα.

Then,

HR[[e]] = t ⇒ e →!
R t.

(the notation HR[[e]] denotes a interpretation of a term e in HR, see Definition

2.1.9).

The next proposition is the key result for proving the equivalence of the

validity of query in the two models.

Proposition 2.6.6

Let R be a program and ∃∆(steq(s, t) = true) a query. Then there exists

a constructor term substitution θ : ∆ → TΣ (i.e. the image of θ is a set of

constructor terms) such that

HR |= ∃∆(steq(s, t) = true)

⇒ QR |= ∀∅(steq(s, t)θ = true).

2.6. Equivalence of the Validity in Models 41

Proof Suppose η = {x1 7→ h1, · · · , xn 7→ hn} is a witness of ∃∆(steq(s, t) =

true), where h1 ∈ Hα1 , · · · , hn ∈ Hαn and ∆ = (x1 : α1, · · · , xn : αn), i.e.

η : ∆ → HR satisfies η#(steq(s, t)) = true. Then

η#(steq(s, t))
= steq(s, t)HR

(h1, · · · , hn).

Note that steq(s, t)HR
is a derived operator on HR. Since each Hαi is an al-

gebraic CPO, hi =
⊔
{zi | compact zi v hi} for i = 1, · · · , n. Furthermore,

steq(s, t)HR
(h1, · · · , hn)

= steq(s, t)HR
(
⊔

{z1 | compact z1 v h1}, · · · ,
⊔

{zn | compact zn v hn}).

=
⊔

{steq(s, t)HR
(z1, · · · , zn) | i = 1, · · · , n, compact zi v hi}

(steq(s, t)HR
is continuous (Lemma 2.6.4))

= true (by assumption).

Therefore we see that there exist compact elements ẑ1 ∈ Hα1 , · · · , ẑn ∈
Hαn such that ẑ1 v h1, · · · , ẑn v hn and

steq(s, t)HR
(ẑ1, · · · , ẑn) = true.

So steqHR(s, t)(ẑ1, · · · , ẑn) ∈ DBool. By Lemma 2.6.2, there exist d1 ∈
Dα1 , · · · , dn ∈ Dαn such that d1 w ẑ1, · · · , dn w ẑn, and

steq(s, t)HR
(d1, · · · , dn) = true. (2.1)

We fix the constructor terms d1, · · · , dn determined above. Let ρ : ∆ → HR

and θ : ∆ → TΣ be assignments such that ρ : {x1 7→ d1, · · · , xn 7→ dn}
and θ : {x1 7→ d1, · · · , xn 7→ dn}. Notice that θ is a substitution to con-

structor terms. By definition of the derived operator, Eq. (2.1) is rewrit-

ten as ρ#(steq(s, t)) = true. Let φ : TΣ → HR be the unique homomor-

phism. So φ#(steq(s, t)θ) = true from TΣ to HR. By Lemma 2.6.5, we obtain

steq(s, t)θ →!
R true. Hence we conclude QR |= ∀∅(steq(s, t)θ = true). ¥

By the above proposition, we can conclude the existence of a normalized

answer substitution for any valid query without a termination assumption of

programs because a constructor term substitution is always normalized. So

we can use narrowing as a sound and complete operational model of FLP

in view of conditional equational logic. This is an answer to the problem

presented in the last proof of Section 2.2. We now give the main theorem in

this section.

42 2. Many-sorted First-order FLP

Theorem 2.6.7

Let R be a program and ∃∆(steq(s, t) = true) a query. Then

QR |= ∃∆(steq(s, t) = true)

⇔ HR |= ∃∆(steq(s, t) = true).

Proof [⇒]:By HR ∈ Mod(R) and Theorem 2.2.9.

[⇐]:Suppose HR |= ∃∆(steq(s, t) = true). By Proposition 2.6.6 there exists

a normalized substitution θ such that

QR |= ∀∅(steq(s, t)θ = true).

By Herbrand’s theorem for equational logic (Theorem 2.2.9), we have

QR |= ∃∆(steq(s, t) = true).

¥

The implication (⇐) of the above theorem states that if a query has a

witness in HR, it also has a witness in QR. If the image of the witness4 in HR

is a set of constructor terms that are compact and total elements of H, then

this statement is straightforward. But if the image of the witness contains

an element that is not a constructor term, i.e., neither a compact element

(meaning an infinite tree, called an infinite witness) nor a total element

(meaning a tree that contains the element ⊥H, called a partial witness),

then this theorem presents quite a remarkable fact. The implication (⇐)

of the theorem means that if an infinite or partial witness is found in HR,

then the existence of the witness in QR whose image is a set of finite trees

can be deduced. In other words, there does not exist a case where the query

has only infinite or partial witnesses in HR. If the query has an infinite or

partial witness in HR, then it certainly has a witness whose image is a set of

constructor terms in HR.

By this theorem, the execution of programs is regarded as solving equa-

tions in the complete Herbrand model HR. This means that the function

symbols may denote partial functions, and the computation may deal with

infinite data. Moreover, narrowing can be used as a method for solving valid

queries, because Proposition 2.6.6 ensures the existence of a normalized sub-

stitution in the quotient term model QR. The equivalence between the two

semantics offers us this natural understanding and a solving method as well.

4If θ is a witness, the set {θ(x) | x ∈ Dom(θ)} is called the image of the witness.

2.7. Categorical Semantics 43

2.7 Categorical Semantics

In this section, we present categorical semantics of many-sorted conditional

equational logic for a semantics of FLP. The categorical semantics can be

considered as a generalization of the algebraic semantics, namely the alge-

braic semantics is a special case of the categorical semantics where the base

category is Set of sets and functions. This categorical semantics is also ex-

tended to the semantics of an interactive functional-logic language in the

next chapter.

A standard way to give categorical semantics to algebraic theories is

known, for example [Cro93, Pit95]. In [Cro93] and [Pit95], the categorical

semantics of many-sorted unconditional equational logic which does not have

existentially quantified equations has been given. In this section we extend

it to give the meaning of conditional and existentially quantified equations

and show the soundness and completeness of this semantic treatment. The

extension is straightforward, as we see below. Basic category theory will be

assumed without comment; see [Mac71, Cro93].

Definition 2.7.1

Let C be a category with finite products and Σ a signature. A structure M
in C for Σ is a pair ([[−]]S : S → obj C, [[−]]Σ : Σ → arr C) of functions such

that

[[f]]Σ : [[α1]]S × . . . × [[αn]]S → [[α]]S

for each function symbol f : α1 × . . . × αn → α. Given a context Γ = (x1 :

α1, . . . , xn : αn), we set [[Γ]]
def
= [[α1]] × . . . × [[αn]].

Definition 2.7.2

The meaning of proved terms in a structure M in a category C with finite

products is given by the following function [[−]]M from proved terms to arrows

of C.

[[Γ, x : α . x : α]]M = π : [[Γ]] × [[α]]S → [[α]]S

[[Γ . k : α]]M = [[k]]Σ : [[Γ]] → [[α]]S

[[Γ . f(t1, . . . , tn) : α]]M = [[f]]Σ ◦ 〈a1, . . . , an〉 : [[Γ]] → [[α]]S

where [[Γ . ti : αi]]M = ai : [[Γ]] → [[αi]]S for i = 1, . . . , n.

Validity is defined in a similar way to the algebraic semantics.

44 2. Many-sorted First-order FLP

Definition 2.7.3

We use the following notations: Let M be a structure in a category C.

(i) We write

M |=cat ∀Γ(s = t ⇐ s1 = t1, · · · , sn = tn)

if for all arrows w : A → [[Γ]],

[[Γ . s]]M ◦ w = [[Γ . t]]M ◦ w

whenever

[[Γ . si]]M ◦ w = [[Γ . ti]]M ◦ w

for all i = 1, · · · , n. Then we say that ∀Γ(s = t ⇐ s1 = t1, · · · , sn = tn)

is valid in the structure M.

(ii) We write

M |=cat ∃∆(
−−−→
si = ti)

if there exists an arrow w : 1 → [[∆]] such that [[∆ . si]]◦w = [[∆ . ti]]◦
w for each i = 1, . . . , n. Then we say that ∃∆(

−−−→
si = ti) is valid in the

structure M.

(iii) Let R be a set of conditional equations.

M |=cat R

if for all conditional equations ∀Γ(s = t ⇐ −−−→
si = ti) in R, M |=cat ∀Γ(s =

t ⇐ −−−→
si = ti). Then we say that the structure M is a model of R.

(iv) The category of all models of R in C, denoted by Mod(R, C), has

• as objects the models of R in C and

• as arrows the homomorphism of models [Cro93] of R in C.

(v) Let e be a universally or existentially quantified equation.

R |=cat e

if for all category C with finite products and models M ∈ Mod(R, C),

M |=cat e.

2.7. Categorical Semantics 45

Soundness and completeness of this categorical semantics for equational

logic are proved in the same way as in [Cro93]. Below we show these prop-

erties by following the standard method.

Lemma 2.7.4 (Semantics of substitution)

Let M be a structure in a category C with finite products, Γ′ . s : β a proved

term where Γ′ = (x1:α1, . . . , xn:αn) and, Γ . ti:αi a proved term for each

i = 1, . . . , n. Define θ : Γ′ → TΣ(Γ) as xi 7→ ti. Then

[[Γ . sθ : β]]M = [[Γ′ . s:β]]M ◦ 〈[[Γ . t1:α1]]M, . . . , [[Γ . tn:αn]]M〉

Proof By induction on the derivation of Γ′ . s : β. ¥

To prove completeness, the classifying category Cl(R) and the generic

model G of R in Cl(R), which intuitively corresponds to the quotient term

model in algebraic semantics, are used.

Definition 2.7.5 (Classifying category)

Let R be a set of axioms. The classifying category Cl(R) is defined as follow:

let Γ = (x1:α1, . . . , xn:αn), Γ′ = (x′
1:α1, . . . , x′

n:αn).

object: A finite sequence (α1, . . . , αn) of sorts.

arrow: A finite sequence

([Γ . t1:β1], . . . , [Γ . tm:βm]) : (α1, . . . , αn) → (β1, . . . , βm)

where [Γ . t:β] denotes an equivalence class of a proved term modulo the

equivalence relation ∼ defined as:

Γ . t:α ∼ Γ′ . t′:α
def⇐⇒ R ` ∀Γ . t = t′θ : α

where θ : Γ → Γ′ is a variable-renaming. This arrow will be written as

(Γ | −→t) : −→α →
−→
β .

identity: id−→α
def
= (Γ | −→xi)

composition: Let Γ′ = (x′
1:α1, . . . , x′

m:αm). For arrows (Γ | −→t) = ([Γ . t1 :

β1], . . . , [Γ . tm : βm]) : −→α →
−→
β and (Γ′ |

−→
t′) = ([Γ′ . t′1 : γ1], . . . , [Γ′ . t′l :

γl]) :
−→
β → −→γ ,

(Γ′ |
−→
t′) ◦ (Γ | −→t) : −→α → −→γ def

= ([Γ . t′1{~x′ 7→ ~t′}], . . . , [Γ . t′l{~x′ 7→ ~t′}]).

terminal object: The empty sequence ()

binary product: (Γ′ |
−→
t′) × (Γ | −→t)

def
= (Γ′, Γ |

−→
t′ ,

−→
t).

46 2. Many-sorted First-order FLP

Definition 2.7.6 (Generic model)

Let Σ be an S-sorted signature and R a set of axioms. The generic model

G = ([[]]S, [[]]Σ) of R in Cl(R) is defined as follows:

[[α]]S = (α) for α ∈ S

[[f : α1, . . . , αn → β]]Σ = (x1:α1, . . . , xn:αn | f(x1, . . . , xn) : β) : −→αi → β

Theorem 2.7.7

Let R be a set of axioms and e a universally or existentially quantified equa-

tion. Then

R ` e ⇔ R |=cat e.

Proof

soundness(⇒): Let M be a model of R in C. It is sufficient to show that

each deduction rule of conditional equation logic is sound. We only

check (axiom) and (existentially introduction) rules, which are addi-

tional part from unconditional many-sorted equational logic.

(axiom): Let Γ = (y1 : β1, . . . , ym : βm) and Γ′ be contexts. Take an

arbitrary axiom ∀Γ(s = t:α ⇐ s1 = t1:α1, · · · , sn = tn:αn) ∈ R and a

substitution θ = {
−−−−−−−−→
xj 7→ uj : βj} : Γ → TΣ(Γ′). Suppose

[[Γ′ . siθ : αi]]M = [[Γ′ . tiθ : αi]]M for each i = 1, . . . , n.

Define v
def
= 〈[[Γ′ . u1:β1]]M, . . . , [[Γ′ . um:βm]]M〉 : [[Γ′]] → [[β1]] × · · · ×

[[βm]]. By Lemma 2.7.4,

[[Γ . si : αi]]M ◦ v = [[Γ . ti : αi]]M ◦ v for each i = 1, . . . , n.

Since M is a model of R, we have

[[Γ . s : α]]M ◦ v = [[Γ . t : α]]M ◦ v. (2.2)

Therefore

[[Γ′ . sθ : α]]M = [[Γ . s : α]]M ◦ v = [[Γ . t : α]]M ◦ v = [[Γ′ . tθ : α]]M.

(existential introduction): Let ∆ = (y1:β1, . . . , ym:βm) and a ground

substitution θ = {xi 7→ ui} : ∆ → TΣ for each i = 1, . . . n. Suppose

[[. siθ : αi]]M = [[. tiθ : αi]]M.

2.8. Deriving Algebraic Semantics from Categorical Semantics 47

Define w
def
= 〈[[. u1:β1]]M, . . . , [[. um:βm]]M〉 : 1 → [[∆]]. By Lemma

2.7.4,

[[∆ . si : αi]]M ◦ w = [[∆ . ti : αi]]M ◦ w. for each i = 1, . . . , n.

Hence

M |=cat ∃∆ . s1 = t1:α1, . . . , sn = tn:αn.

completeness(⇐): For a universally quantified equation,

R |=cat ∀Γ . s = t : α

⇒ G |=cat ∀Γ . s = t : α

⇒ (Γ | s) = [[Γ . s:α]]G = [[Γ . t:α]]G = (Γ | t)

⇒ R ` ∀Γ . s = t : α.

For an existentially quantified equation,

R |=cat ∃∆ . s = t : α

⇒ G |=cat ∃∆ . s = t : α

⇒ (∆ | s) ◦ w = [[∆ . s:α]]G ◦ w = [[∆ . t:α]]G ◦ w = (∆ | t) ◦ w

where w : 1 → [[∆]] is some arrow in Cl(R), which is expressed as

w = (| t1:β1, . . . , tn:βn) : 1 → (β1, . . . , βn)

where ti ∈ TΣ for each i = 1, . . . , n. Define a substitution θ =

{−−−−→xi 7→ ti} : ∆ → TΣ. Then

(| sθ) = (| tθ) : 1 → α

⇒ R ` ∀∅ . sθ = tθ : α

⇒ R ` ∃∆ . s = t : α.

¥

2.8 Deriving Algebraic Semantics from Cat-

egorical Semantics

We derive algebraic semantics of equational logic defined in Section 2.3 from

the categorical semantics. Suppose that A = ({Aα | α ∈ S}, ΣA) is an Σ-

algebra and it is a model of a set R of axioms. We take the category Set of

48 2. Many-sorted First-order FLP

all sets and functions as the category C in the categorical semantics. Clearly

Set has finite products as cartesian products and there are projection (πi)

and pairing (〈−,−〉) functions and the terminal object 1 (one element set

{∗}). Define the structure MA = ([[−]]S, [[−]]Σ) for A as follows.

[[α]]S = Aα for α ∈ S

[[f]]Σ = fA : Aα1 × . . . × Aαn → Aα for f : α1 × . . . × αn → α ∈ Σ.

Then we know that the categorical meaning of a proved term t in the structure

M on Set is the derived operator tA defined in Definition 2.6.3.

Lemma 2.8.1

Let MA be a structure in Set generated from a Σ-algebra A. Then

[[x1 : α1, . . . , xn : αn . t : α]]MA
= tA : Aα1 × . . . × Aαn → Aα

Proof Induction on the structure of a well-typed term t. Let Γ be x1 :

α1, . . . , xn : αn.

Base case:

[[Γ . xk : αk]]MA
= πk : Aα1 × . . . × Aαn → Aαk , where πk(a1, . . . , an) = ak

for each ai ∈ Aαi , i = 1, . . . , n. By the definition of derived operator, (xk)A :

Aα1 × . . . × Aαn → Aα is defined as:

(xk)A(a1, . . . , an) = θ(xk)

where θ : Γ → A
θ(xi) = ai for each i = 1, . . . , n.

Namely

(xk)A(a1, . . . , an) = θ(xk) = ak = πk(a1, . . . , an).

Hence (xk)A = πk.

Induction step:

[[Γ . f(t1, . . . , tm)]]MA
= fA ◦ 〈b1, . . . , bm〉 : Aα1 × . . . × Aαm → Aα where

[[Γ . ti : αi]]MA
= bi for each i = 1, . . . ,m. Let ai ∈ Aαi for each i = 1, . . . , n.

By the induction hypothesis, bi = tiA for each i = 1, . . . ,m. Therefore

fA ◦ 〈b1, . . . , bm〉(a1, . . . , an) = fA(t1A(a1, . . . , an), . . . , tmA(a1, . . . , an))

= fA(θ#(t1)(a1, . . . , an), . . . , θ#(tm)(a1, . . . , an))

= f(t1, . . . , tm)A(a1, . . . , an)

Deriving Algebraic Semantics 49

where θ : Γ → A such that θ(xi) = ai for i = 1, . . . , n. Hence fA ◦
〈b1, . . . , bm〉 = f(t1, . . . , tm)A. ¥

Conversely, for a model M = ([[−]]S, [[−]]Σ) ∈ Mod(R,Set), we can define

the following Σ-algebra AM = ({Aα | α ∈ S}, ΣAM):

carrier:

Aα def
= [[α]]S for α ∈ S

operation:

fAM

def
= [[f]]Σ : Aα1 × · · · × Aαn → Aα for f : α1, . . . , αn → α1.

Proposition 2.8.2

Let e be a universally quantified conditional equation or an existentially

quantified equation and M a structure in Set. Then

(i) A |= e ⇒ MA |= e,

(ii) M |= e ⇒ AM |= e.

Proof
(i) Case: e is a universally quantified equation

Suppose Γ = (x1 : α1, . . . , xn : αm) and A |= ∀Γ(s = t : α ⇐ s1 =

t1 : α1, . . . , sn = tn : αn). Let B be a set (an object of Set) and

w : B → [[Γ]] a function (an arrow of Set) such that [[Γ . si : αi]]MA
◦w =

[[Γ . ti : αi]]MA
◦ w for each i = 1, . . . , n where

w(b)
def
= (b1, . . . , bm) for each b ∈ B

where bi ∈ Aαi (note: the superscript b indicates just a syntactical

superscript) for each i = 1, . . . ,m. Define the assignment θ : Γ → A
as θ : xj 7→ bj for each j = 1, . . . ,m. We obtain for b ∈ B and each

i = 1, . . . , n,

θ#(si) = siA(b1, . . . , bm) (by definition of derived operator)

= [[Γ . si]]MA
(b1, . . . , bm) (by definition of [[]])

= [[Γ . si]]MA
◦ w(b)

= [[Γ . ti]]MA
◦ w(b) (assumption)

= [[Γ . ti]]MA
(b1, . . . , bm)

= tiA(b1, . . . , bm)

= θ#(ti)

50 2. Many-sorted First-order FLP

By A |= ∀Γ(s = t : α ⇐ s1 = t1 : α1, . . . , sn = tn : αn), we have

θb#(s) = θb#(t). Then

[[Γ . s]]MA
◦ w(b) = [[Γ . s]]MA

(b1, . . . , bm) = sA(b1, . . . , bm)

= θb#(s) = θb#(t)

= [[Γ . t]]MA
◦ w(b).

Hence MA |= ∀Γ(s = t : α ⇐ s1 = t1 : α1, . . . , sn = tn : αn) .

Case: e is an existentially quantified equation

Suppose ∆ = (x1 : α1, . . . , xn : αm) and A |= ∃∆(s = t : α). Now

there exists an assignment θ : ∆ → A such that xi 7→ ai ∈ Aαi for each

i = 1, . . . ,m and θ#(s) = θ#(t). Then

[[. s : α]]MA
(a1, . . . , an) = sA(a1, . . . , an)

= θ#(s) = θ#(t) = [[. t : α]]MA
(a1, . . . , an)

Take a function w : 1 → [[∆]] as w : ∗ 7→ (a1, . . . , am). Then [[∆ . s : α]]MA
◦

w = [[∆ . t : α]]MA
◦ w. Hence MA |= ∃∆(s = t : α).

(ii) Similar to (i).

¥

Chapter 3

Interactive First-order FLP

In this chapter, we add interaction to a first-order FLP. Here the word “in-

teraction” is meant in the sense of Barendregt’s consideration of “interac-

tive functional programming” [Bar96, Bar97]. More precisely, “interaction”

means computation with side-effects outside of the programming environ-

ment, like file systems, user inputs, terminal outputs, etc. This kind of

programming feature is necessary in realistic programs.

Our approach of defining syntax and semantics of an interactive functional-

logic language is given by the following way.

• Syntax is given by an extension of Moggi’s computational metalanguage

[Mog91].

• Axiomatic semantics is given by the deduction system of the computa-

tional metalanguage.

• Categorical semantics is given by categories with finite products and

the strong monad for side-effects [Mog88, Mog91].

• Operational semantics is given by translating the computational met-

alanguage to a conditional term rewriting system.

This chapter falls into two parts. In the first four sections we describe

the computational metalanguage and its semantics following Moggi. In the

next three sections we define the translation from interactive FLPs using the

computational metalanguage to CTRSs and discuss its correctness.

52 3. Interactive First-order FLP

3.1 Computational Metalanguage

Moggi’s computational metalanguage is a formal system designed for describ-

ing and reasoning several kinds of computations, which includes partial com-

putation, nondeterministic computations, computations with side-effects, ex-

ceptions or continuations. The computational metalanguage is an extension

of many-sorted equational logic where the extensions are

• the introduction of computational types, and

• the introduction of let-terms having the computational types.

The most important feature of the computational metalanguage is that it

distinguishes between values and computations by types and nests of let-

terms express sequential computation in imperative programming languages.

These features and formalization of the computational metalanguage matches

with our approach to an interactive first-order functional-logic language in

view of equational logic because we can regards the interaction as an instance

of computation that can be expressed by the computational metalanguage,

and interactive functional-logic programs as restricted form of axioms of the

computational metalanguage. Therefore we use the computational meta-

language as the basis of the first-order interactive functional-logic language.

We extend Moggi’s computational metalanguage to include conditional and

existentially quantified equations for syntax.

The formal system of the computational metalanguage is defined by giving

sorts, signature, terms, equations and deduction rules in the same way as in

the case of many-sorted conditional equational logic.

Definition 3.1.1 ([Mog91])

A set S of sorts for the computational metalanguage is a set of types given

by the following grammar:

α ::= b base type
| Tα computational type

In this chapter, we use the naming convention that α, α1, . . . denote types

and b, b1, . . . denote base types. Moggi’s idea is to distinguish values and

computations by types, which is done by introducing a unary type constructor

T . We think of Tα as a type of computations of elements of type α and a

base type as a type of values.

3.1. Computational Metalanguage 53

A computational signature Σ is an S-sorted signature such that for every

function symbol f : α1, . . . , αn → α, every source sort α1, . . . , αn is a base

type. The raw terms are defined as follows:

t ::= x variable
| k constant
| f(t1, . . . , tn) function term
| [t]T unit term
| let x := t1 in t2 let-term

where k is a constant symbol of zero arity and f a function symbol of non-zero

arity n in the signature Σ.

The typing rules consist of the rules given in Definition 2.1.3 and the

following:

([])
Γ . t : α

Γ . [t]T : Tα

(let)
Γ . s : Tα Γ, x : α . t : Tβ

Γ . let x := s in t : Tβ

Universally quantified (conditional) and existentially quantified equations

are also defined for these proved terms as specified by Definition 2.1.11.

The notion of substitution is obviously extended to unit and let-terms: A

substitution for the computational metalanguage is an assignment θ : ∆ →
TΣ(Γ) such that

θ#(x) = θ(x),

θ#(k) = k,

θ#(f(t1, . . . , tn)) = fA(θ#(t1), . . . , θ#(tn)),

θ#([t]T) = [θ#(t)]T ,

θ#(let y := t1 in t2) =

let y := θ#(t1) in t2 y ∈ ∆

let y := θ#(t1) in θ#(t2) y 6∈ ∆ & y 6∈ Γ

let y := θ#(t1) in θ#(t2[w]y) y 6∈ ∆ & y ∈ Γ

where w is a fresh variable.

Definition 3.1.2

The deduction rules for the computational metalanguage consists of the rules

54 3. Interactive First-order FLP

of Definition 2.1.12 and the following adding rules:

([].ξ)
∀Γ(t1 = t2 : α)

∀Γ([t1]T = [t2]T) : Tα

(let.ξ)
∀Γ(t1 = t2 : Tα1) ∀Γ, x : α1(t

′
1 = t′2 : Tα2)

∀Γ((let x := t1 in t′1) = (let x := t2 in t′2) : Tα2)

Axiom schema LET is defined for any proved terms Γ . t:α, Γ . t1:Tα1, Γ, x1:α1 .

t2 : Tα2, Γ, x2:α2 . t3 : Tα3:

(ass) ∀Γ((let x2 := (let x1 := t1 in t2) in t3)

= (let x1 := t1 in (let x2 := t2 in t3)) : Tα3)

(let.β) ∀Γ((let x1 := [t]T in t2) = t2[t]x1 : Tα2)

(unit) ∀Γ((let x1 := t1 in [t1]T) = t1 : Tα1).

We write

R `cml e

where a theorem e is deduced from a set R of axioms and LET by using

these deduction rules.

Again, a Herbrand theorem hold for the computational metalanguage.

Corollary 3.1.3 (Herbrand’s Theorem for the computational

metalanguage)

Let R be a set of axioms. Then, we have

R ` ∃∆(s1 = t1, . . . , sn = tn)

⇔ R ` ∀∅(s1θ = t1θ), . . . ,R ` ∀∅(snθ = tnθ) for some θ : ∆ → TΣ

Proof It is clear from the (existential introduction) deduction rule in Defi-

nition 2.1.12. ¥

3.2 Categorical Semantics Based on Strong

Monads

The semantics of the computational metalanguage is given by categorical

structure called strong monads. This categorical semantics is an extension of

3.2. Categorical Semantics Based on Strong Monads 55

the categorical semantics of many-sorted conditional equational logic given

in Section 2.7, where terms of base types (i.e. values) are interpreted in

exact same way as in the categorical semantics of many-sorted conditional

equational logic, and terms of computational types (i.e. computations) are

interpreted by using the monad structure.

In this section, we review the semantics of the computational metalan-

guage by following Moggi [Mog91]. First we give three preliminary definitions

of monads from category theory.

Definition 3.2.1 ([Mac71])

A monad over a category C is a triple (T, η, µ), where T : C → C is a functor

and η : IdC
·→ T, µ : T 2 ·→ T are natural transformations, satisfying the

following:

µTA; µA = T (µA); µA,

ηTA; µA = idTA = T (ηA); µA.

Definition 3.2.2 (Strong monad [Mog88])

A strong monad over a category C with finite products is a monad (T, η, µ)

together with a natural transformation tA,B : A× TB
·→ T (A×B), called a

tensor strength, such that

t1,A; T (rA) = rTA

tA×B,C ; T (αA,B,C) = αA,B,TC ; (idA × tB,C); tA,B×C

(idA × ηB); tA,B = ηA,B

(idA × µB); tA,B = tA,TB; T (tA,B); µA,B

where r and α are the natural isomorphisms

rA : (1 × A) → A,

αA,B,C : (A × B) × C → A × (B × C).

Definition 3.2.3 (Kleisli triple [Mac71])

A Kleisli triple over a category C is a triple (T, η, ∗) that consists of

• a function T : obj C → obj C,

• a natural transformation η : IdC
·→ T , and

• a function ∗ that yields an arrow f∗ : TA → TB for each f : A → TB

56 3. Interactive First-order FLP

and furthermore, the following equations hold:

• η∗
A = idTA,

• ηA; f ∗ = f for f : A → TB,

• f ∗; g∗ = (f ; g∗)∗ for f : A → TB and g : B → TC.

It is well-known that there is a one-one correspondence between Kleisli triples

and monads [Man76]. So we refer to a Kleisli triple with a tensor strength

as a strong monad.

Next, the meaning of terms in a category equipped with finite products

and a strong monad is defined. The meaning of existentially and universally

quantified (conditional) equations is defined in the same way as in the first-

order FLP. Then, we show that this semantics is sound and complete with

respect to the deduction system defined in Definition 3.1.2.

Definition 3.2.4 ([Mog91])

Let C be a category with finite products. The structure M for the compu-

tational metalanguage in C is ([[]]S, [[]]Σ, (T, η, ∗, t)) where [[]]S : S → obj C
and [[−]]Σ : Σ → arr C are functions such that

[[k]]Σ : 1 → [[α]]S

for each constant symbol k : α ∈ Σ,

[[f]]Σ : [[α]]S × · · · × [[αn]]S → [[α]]S

for each function symbol f : α1 × · · · × αn → α ∈ Σ, and (T, η, ∗, t) is a

strong monad such that

[[Tα]]S = T [[α]]S.

The meaning of a proved term in a structure M in C is defined by Definition

2.7.2 together with the following:

[[Γ . [t]T : Tα]]M = η[[α]]S
◦ [[Γ . t : α]]M

[[Γ . let x := s in t : Tβ]]M = g∗
2 ◦ t[[Γ]],[[α]]S

◦ 〈id[[Γ]], g1〉
where g1 = [[Γ . s : Tα]]M

g2 = [[Γ, x : α . t : Tβ]]M.

The notion of validity and model for this structure is defined in the same way

as in Definition 2.7.3. We use the symbol |=cml for validity in this structure

of the computational metalanguage.

3.3. Interactive First-order FLP 57

The deduction system of the computational metalanguage is sound and

complete with respect to this categorical semantics. Formally, this is stated

as follows.

Theorem 3.2.5

Let Σ be a computational signature, R a set of axioms and e an unconditional

universally or existential quantified equation. Then,

R `cml e ⇔ R |=cml e.

Proof The proof is to extend the soundness and completeness result of

Moggi’s computational metalanguage [Mog91] by treating conditional and

existential equations in the same way as in the proof of Theorem 2.7.7.

3.3 Interactive First-order FLP

In this section, we define interactive functional-logic programs as particular

form of axioms of the computational metalanguage and queries as existen-

tially quantified equations.

Definition 3.3.1

An interactive FLP signature Σ is an S-sorted signature satisfying the re-

quirements of

• the first-order FLP signature (Definition 2.4.1), and

• the computational signature (Definition 3.1.1).

Definition 3.3.2 (Interactive first-order FLP)

A set R of axioms is called an interactive FLP if R satisfies the following:

(i) R is built from an interactive first-order FLP signature.

(ii) R is a properly-oriented orthogonal 3-CTRS1.

1An interactive FLP R is not a usual CTRS because it contains let-terms. However
the definition of properly orientedness, orthogonality and type-3-ness are applicable to the
interactive FLP of the following reasons:

• orthogonality only depends on the left-hand sides of R and they are non-let-terms,

• properly orientedness and type-3-ness are conditions on variable occurrences.

58 3. Interactive First-order FLP

(iii) R contains the set STEQ of axioms.

Furthermore, for each axiom ∀Γ(l = r ⇐ −−−→
si = ti) in R, the following condi-

tions are satisfied:

(i) l is of the form f(t1, . . . , tn) where f : b1, . . . , bn → α ∈ Fun and

t1, . . . , tn are constructor terms.

(ii) If the type of r is a computational type, the conditional part must be

empty.

(iii) All the equations s1 = t1, . . . , sn = tn are strict equations on base

types.

Definition 3.3.3 (Query of interactive first-order FLP)

Let R be a interactive FLP. A query of interactive FLP is an existentially

quantified equation of the form

∃∆ .
−−−→
si = ti.

Execution of interactive FLP is to prove the query under the interactive FLP

R as a set of axioms by obtaining answer substitutions using the deduction

system of the computational metalanguage, i.e.

R `cml ∃∆ .
−−−→
si = ti

Example 3.3.4

Hereafter we omit universal quantifications in examples.

Sort set S:

Int, Unit, IntList, IO Int, IO Unit, . . .

Signature Σ

read : IO Int,

write : Int → IO Unit,

readseq : Int → IO IntList,

main : IO Unit ∈ Fun

() : Unit,

:: : Int,IntList → IntList (cons),

[] : IntList (nill) ∈ Con

3.4. The Strong Monad for Side-effects 59

nth : IntList,Int → Int, (and other built-in functions . . .) ∈ Fun

Interactive FLP R
readseq(0) = [[]]IO
readseq(S(k)) = let n:=read in

let u := readseq(k) in

[n::u]IO

main = let u:= readseq(5) in

let m:= [nth(u,3)]IO in

write(m)

3.4 The Strong Monad for Side-effects

The computational metalanguage is a formal system for reasoning about

several kinds of programming languages by changing the interpretation of

T in a structure of semantics. Here we fix the interpretation of T for our

interactive functional-logic language, by imposing the interpretation of side-

effects on T . This interpretation is given by the strong monad for side-effects

[Mog91]. In this section we review the definition of it.

Definition 3.4.1

To express interaction, The following strong monad (T, η, ∗, t) for side-effects

over a cartesian closed category C (having curry and eval) [Mog88] is defined

as follows. Let St be an object of C, whose intention is a set of states.

• TA
def
= St ⇒ A × St (exponential).

• ηA = currySt,(A×St),A(ηA×St).

• µA = currySt,(A×St),(T 2A)(evalSt,T (A×St); T (evalSt,(A×St); µA×St).

• tA,B = currySt,(A×St),(A×TB)(αA,TB,St; (idA×evalSt,(B×St); tA,B×St; T (α−1
A,B,St)).

The above is a general definition of the strong monad for side-effects in

an arbitrary ccc. For a more concrete description, in the category Set of sets

and functions, the strong monad is expressed as the following Kleisli triple

[Mog91], where the object St is considered as the set of states. We use a

meta-notation λx.t for denoting a function.

60 3. Interactive First-order FLP

• TA
def
= St ⇒ A × St (function space).

• ηA(a) = λs.(a, s).

• The function ∗ is defined as follows: If f : A → TB and g ∈ TA, then

f ∗(g) = λs.f(a)(s′) where (a, s′) = g(s).

• tA,B(a, g) = λs.((a, b), s′) where (b, s′) = g(s).

Example 3.4.2

If we interpret the program R in Example 3.3.4 in Set, we can give a structure

([[]]S, [[]]Σ, (T, η, ∗, t)) for a model as follows:

[[Int]]S
def
= Z (the set of integers)

[[IntList]]S
def
= Z∗ (the set of all finite sequences of Z.)

Then, we set

[[St]]S
def
= Z∗

T
def
= IO : obj Set → obj Set

IO A
def
= Z∗ ⇒ A × Z∗ for every set A.

3.5 A Translation from Interactive FLPs to

CTRSs

Next, we give the operational semantics for interactive FLPs. Moggi did not

give a reduction based operational semantics. If we give such a operational

semantics for the computational metalanguage directly, it may not be suffi-

cient one because it seems to be no way to reduce let-terms to non-let-terms

without specifying the interpretation of T .

So our strategy to give the operational semantics is to use term rewriting

for evaluating, and narrowing for solving interactive FLPs. Since an interac-

tive FLP contains let-terms, rewriting needs to handle let-terms. Instead of

directly defining rewriting on let-terms, we first translate let-terms to usual

conditional rewrite rules, and then use usual conditional term rewriting and

narrowing. The reason for taking this approach is that if we use usual con-

ditional term rewriting for interactive FLPs, soundness and completeness

3.5. A Translation from Interactive FLPs to CTRSs 61

result of conditional narrowing can be obtained by using existing results.

Since soundness and completeness of a solving method for queries are most

important properties of FLP, we think that the translation approach we take

here for interactive FLPs is convenient to ensure these properties without a

complicated proof of completeness.

The ideas of the translation from interactive FLPs to CTRSs are the

following:

• to be explicit “state passing variables” in function terms of a compu-

tational type Tα, and

• to use the conditional part of a conditional rewrite rule for expressing

sequential computation, instead of using a let-term in an interactive

FLP.

The second idea comes from Suzuki et al.’s consideration of “conditions as

where-clauses” and its justification in rewriting theory [SMI95].

First we give a notion of normal form of let-terms, which is used in the

translation.

Definition 3.5.1

let-normal forms are well-typed terms given by the following grammar:

m ::= x | k | f(t1, . . . , tn) | let x := t in m

where t1, . . . , tn, t are well-typed non-let-terms.

α-conversion of the let-binding variables is derivable from the set LET of

axioms.

Lemma 3.5.2

If Γ . s:α, Γ, x:Tα . t:β and y(6= x) do not occur in Γ,

LET `cml (α) ∀Γ((let x := t1 in t2) = (let y := t1 in t2[y]x)).

Proof

let x := s in t

= let x := (let y := s in [y]T in t) (unit)

= let y := s in (let x := [y]T in t) (ass)

= let y := s in t[y]x (let.β).

62 3. Interactive First-order FLP

Theorem 3.5.3

Let Γ . s : α. There is a let-normal form m such that LET ` ∀Γ(s = m).

Such a normal form is unique up to the congruence generated by (α).

Proof Similar to the normal form theorem in [Has97].

We can choose exactly one let-normal form that includes exactly the same

let-binding variables m from the (α)-equivalence class of a let-normal form

of s. We define the function normalize which maps any term to such chosen

let-normal form.

Definition 3.5.4

Let R be an interactive FLP over an S-sorted FLP signature Σ. Define the

new sort set S◦ generated by the following grammar:

S◦ 3 α ::= b
| St
| b × St

where b ∈ S and St (the type of states) is new type not occurring in S. The

translation ◦ from an interactive FLP R to a CTRS R◦ over the S◦-sorted

signature Σ◦ is defined as follows. We overload the translation function
◦ over several syntactic objects, i.e., signatures, proved terms, rules and

equations, and furthermore the auxiliary function • over rules and equations.

For signatures, the translation ◦ from Σ to a S◦-sorted signature is defined

as follows:

(k : b)◦
def
= k : b

(k : Tβ)◦
def
= k : St → β × St

(f : α1, . . . , αn → b)◦
def
= f : α1, . . . , αn → b

(f : α1, . . . , αn → Tβ)◦
def
= f : α1, . . . , αn, St → β × St

Σ◦ def
= {f ◦ | f ∈ Σ} ∪ {〈 , 〉b : b × St | base type b ∈ S}.

The superscript of the pairing constructor symbol 〈 , 〉b is omitted hereafter.

For proved terms, the translation ◦ takes a pair of a proved term and a

variable s0, which may be attached to a translated term, and returns a proved

term over the signature Σ◦. Below, we assume that Γ is a typing context, y

3.5. A Translation from Interactive FLPs to CTRSs 63

an arbitrary variable not occurring in Γ and, s and t are non-let-terms.

(Γ . t : b, s0)
◦ def

= Γ . t : b

(Γ . x : Tβ, s0)
def
= Γ . x : β × St

(Γ . [t]T : Tβ, s0)
◦ def

= Γ, s0 : St . (t, s0) : β × St

(Γ . f(t1, . . . , tn) : Tβ, s0)
◦ def

= Γ, s0 : St . f(t1, . . . , tn, s0) : β × St.

A typing context Γ is often omitted in ()◦ for proved terms.

(Γ . let x1 := a1 in . . . let xn := an in t, s0)
◦

def
= (Γ, s0 : St . g(−→zi , s0),

{g(−→zi , s0) = (t, sn)◦ ⇐ (a1, s0)
◦ = 〈x1, s1〉, . . . , (an, sn−1)

◦ = 〈xn, sn〉})

Here g is a fresh function symbol and

{−−−→zi : αi}
def
= V (let x1 := a1 in . . . let xn := an in t) .

It is obvious that the translated proved terms are actually proved terms,

i.e., they have a typing proof. For rules, the translation ◦ takes a rule and

returns a pair of translated rules.

(∀Γ . l → r : α)◦
def
= (∀Γ . l → normalize(r) : α)•

(∀Γ . l → r : b)•
def
= ∀Γ . l → r : b

(∀Γ . l → t : Tβ)•
def
= ∀Γ, s0 . l′ = t′ : β × St

(∀Γ . l → let x1 := a1 in . . . let xn := an in t : Tβ)•

def
= ∀Γ,−−−→xi : αi,

−−−→
si : St . (l, s0)

◦ → (t, sn)◦ : β × St

⇐ (a1, s0)
◦ = 〈x1, s1〉, . . . , (an, sn−1)

◦ = 〈xn, sn〉

where (l′, ∅)
def
= (l, s0)

◦, (t′, ∅)
def
= (t, s0)

◦, t is a non-let-term and s0, . . . , sn

are variables. R◦ is defined by translating each rule in R:

R◦ def
= {(∀Γ . l → r)◦ | ∀Γ . l → r ∈ R}.

64 3. Interactive First-order FLP

For universally quantified equations, the translation ◦ using the auxiliary

function • takes a universally quantified equation is defined as follows:

(∀Γ . s = t : α)◦
def
= (∀Γ . normalize(s) = normalize(t) : α)•

(∀Γ . s = t : b)•
def
= ∀Γ . s = t : b

(∀Γ . s = t : Tβ)•
def
= (∀Γ, s0 : St . s′ = t′ : β × St, δ1 ∪ δ2)

where (s′, δ1)
def
= (s, s0)

◦ and (t′, δ2)
def
= (t, s0)

◦. For existentially quantified

equations, the translation ◦ using the auxiliary function • takes an existen-

tially quantified equation and yields a pair consisting of a set of translated

equation and a set of equations to be added to R◦.

(∃∆ .
−−−−−−→
si = ti : αi)

◦ def
= (−→ei ,

⋃
δi)

where (ei, δi)
def
= (normalize(si) = normalize(ti))

• for each i, and

(s = t : b)•
def
= (s = t : b, ∅)

(s = t : Tβ)•
def
= (s′ = t′ : β × St, δ1 ∪ δ2)

where (s′, δ1)
def
= (s, s0)

◦ and (t′, δ2)
def
= (t, s0)

◦.

Example 3.5.5

The translated CTRS R◦ from the interactive FLP R presented in Example

3.3.4 is as follows.

readseq(0,s0) → []

readseq(S(k),s0) → 〈n::u, s2〉 ⇐read(s0)=〈n,s1〉, readseq(k,s1)=〈u,s2〉
main(s0) → write(m,s2) ⇐readseq(s0)=〈u,s1〉, nth(u,3,s1)=〈m,s2〉

We can easily see the following proposition.

Proposition 3.5.6

If R is an interactive first-order FLP over an interactive FLP signature Σ,

then R◦ a first-order FLP over a first-order FLP signature Σ◦.

An interactive first-order FLP R may have function symbols of a com-

putational type Tα, for example, read : IO Int and write : IO Int in Example

3.5.5. But such function symbols may not have axioms to determine their

3.6. Soundness of the Translation ◦ 65

return values. For instance, in the program R of Example 3.5.5 there is no

axiom for read and write. This also means that we can freely interpret the

meaning of read and write for the program R in any model, or equivalently,

we can freely add axioms for read and write preserving the model-property

of any structure. In expression, this is roughly expressed as follows. Let

f : α1, . . . , αn → Tα be a function symbol not occurring as an axiom of the

form f(t1, . . . , tn) = r : Tα in R. Then for any model M of R, we have the

following.

(i) M |= R where [[f]]Σ is an arbitrary interpretation of f .

(ii) M |= R ∪ {f(t1, . . . , tn) = r : Tα} where [[f]]Σ satisfies the axiom

f(t1, . . . , tn) = r : Tα.

A function symbol like f is called built-in interactive function symbol,

which will be defined in Definition 3.6.1. Axioms for built-in function symbols

f , are not specified in (i). From the view point of realistic implementation of

interactive FLPs, this is is preferable. Because (i) means that we can freely

implement the behaver of these interactive function symbols, and it does not

impose that such implementation (axiomatization) is given by rewrite rules.

In other words, even if we implement interactive functions in, for example, the

C language, property (i) holds, where we mean by “implement” an arbitrary

interpretation ([[f]]Σ).

However, the approach we take here is like (ii). We implement the be-

havior of interactive functions by rewrite rules. The reason is, as discussed

in the introduction of this section, that we want to use term rewriting and

narrowing as the operational semantics of interactive FLPs and to ensure its

soundness and completeness by using existing results of narrowing.

3.6 Soundness of the Translation ◦

In this section, we show that the translation ◦ is a sound translation with

respect to the deduction system of the computational metalanguage.

We start by defining built-in interactive axioms.

Definition 3.6.1 (Built-in interactive axioms)

Let R be an interactive FLP over the S-sorted signature Σ. A set Rb of

axioms is called built-in interactive axioms if the following conditions are

satisfied:

66 3. Interactive First-order FLP

• Rb is a first-order FLP over S◦-sorted signature Σ◦.

• For each axiom l = r ∈ Rb, l has the form f(t1, . . . , tn, s) where

f : b1, . . . , bn, St → α × St ∈ Fun◦ ⊆ Σ◦, is called interactive function

symbol .

• For any interactive function symbol f : b1, . . . , bn, St → α × St and

ground terms t1, . . . , tn, there exist ground terms a : α, s : St such that

f(t1, . . . , tn) →∗
R◦∪Rb

〈a, s〉.

Example 3.6.2

read and write in Example 3.3.4 are built-in interactive function symbols. An

example of built-in interactive axioms for them are the following:

read : IntList → Int × IntList

read(n::s)=〈n,s〉
write : Int × IntList → Unit × IntList

write(n,s)=〈(),n::s〉

We need the following lemma for proving the soundness of the translation.

Lemma 3.6.3

Let Γ . t : α and s0 a variable. If t is neither a let-term nor a variable, for

θ : Γ′ → TΣ(Γ′′), Γ′ ⊆ Γ,

(t, s0)
◦θ = (tθ, s0)

◦.

The translation ◦ is sound for universally quantified theorems in the

following sense.

Theorem 3.6.4

Let R be an interactive first-order FLP over an S-sorted signature Σ, and

Rb a set of built-in interactive axioms over an S◦-sorted signature Σ◦. Define

(∀Γ′ . s′ = t′ : α, δ)
def
= (∀Γ . s = t : α)◦. Then,

R `cml ∀Γ . s = t : α ⇒ R◦ ∪ δ ∪Rb ` ∀∅ . s′σ = t′σ : α

for every ground substitution σ : Γ′ → TΣ.

Proof Case α = b. Clear.

Case α = Tβ: By induction on the height of the proof. We proceed by a

case analysis of the last used rule.

3.6. Soundness of the Translation ◦ 67

(i) Case (axiom)

Note that since now t is a computational type, the used axiom does

not have a conditional part (cf. Definition 3.3.2). Suppose the follow-

ing proof using the computational metalanguage (hereafter, “cml” is

indicated at the left of a proof by the computational metalanguage).

cml
∀Γ′ . lθ = rθ : Tβ

(ax.), (∀Γ . l → r) ∈ R, θ : Γ → TΣ(Γ′).

(i-a) Case r is a non-let-term. Then (∀Γ, s : St . (l, s)◦ → (r, s)◦) ∈ R◦.

Since by Lemma 3.6.3, (lθ, s)◦ = (l, s)◦θ we can construct the

following proof using many-sorted equational logic:

∀Γ′, s : St . (l, s)◦θ = (r, s)◦θ
(ax.).

(i-b) Case r is a let-term. Without loss of generality, we can assume

that r is a let-normal form (let x1 := a1 in . . . let xn := an in t),

cml
∀Γ′ . lθ = rθ

(ax.), ∀Γ . (l → r) ∈ R, θ : Γ → TΣ(Γ′).

Then, the used axiom is translated to

δ1 : (l, s0)
◦ → (t, sn)◦ ⇐ (a1, s0)

◦ = 〈x1, s1〉, . . . , (an, sn−1)
◦ = 〈xn, sn〉 ∈ R◦.

We will construct a proof for

R◦ ∪ {δ1, δ2} ∪ Rb ` (lθ, s0)
◦σ = g(−→zi , s0)σ

where σ : Γ′ → TΣ is some ground substitution and

δ2 : g(−→zi , s0) → (tθ, sn)◦ ⇐ (a1, s0)
◦ = 〈x1, s1〉, . . . , (an, sn−1)

◦ = 〈xn, sn〉 ∈ R◦.

In the same way as the construction of a substitution ρ in (vi), we

can define a substitution ρ
def
= {

−−−−→
zi 7→ ẑi,

−−−−→
si 7→ ŝi,

−−−−→
xi 7→ x̂i} where

each zi is an arbitrary ground term. Then,

(l, s0)
◦θρ = (t, sn)◦θρ

(ax.), δ1

(lθ, s0)
◦ρ = (tθ, sn)ρ

(Lemma 3.6.3)

−−−−−−−−−−−−−−−−→
(aiθ, si−1)

◦ρ = 〈xi, si〉ρ
g(−→zi , s0)ρ = (tθ, sn)◦ρ

(ax.), δ2

(lθ, s0)
◦ρ = g(−→zi , s0)ρ

(tr.)

(ii) Case (reflexivity), (transitivity), (symmetry), (permutation). Straight-

forward.

68 3. Interactive First-order FLP

(iii) Case (congruence).

cml
∀Γ .

−−−−−−→
si = ti : bi

f(−→si) = f(
−→
ti) : Tβ

(congr.)

The function symbol f :
−→
bi → Tβ ∈ Σ is translated to f :

−→
bi , St →

β, St ∈ Σ◦. Hence

∀Γ, s0 : St .
−−−−−−−−−−−−→
(si, s0)

◦ = (ti, s0)
◦

(I.H.)
∀Γ, s0 : St . s0 = s0

(ref.)

f(−→si , s0) = f(
−→
ti , s0)

(congr.)

(iv) Axioms in LET.

(iv-a) R `cml(ass). By normalization of let-terms in the translation ◦.

(iv-b) R `cml (let.β) ∀Γ . (let x1 := [t]T in t2) = t2[t]x1 : Tβ. We will

construct a proof for the translated (let.β) by ◦:

R◦ ∪ δ ∪Rb ` g(−→zi , s0)σ = (t2[t]x1 , s0)
◦σ

for any ground substitution σ : Γ, s0 : St → TΣ and

δ : ∀Γ, s0 : St . g(−→zi , s0) = (t2, s0)
◦ ⇐ 〈t, s0〉 = 〈x, s1〉.

The proof is done in the following way. Let θ : {x 7→ t, s1 7→ s0} be

a substitution and σ : Γ, s0:St → TΣ be any ground substitution.

(t, s0)
◦θσ = 〈x, s1〉θσ

(ref.), δ

g(−→zi , s0)θσ = (t2, s0)
◦θσ

(ax.)

g(−→zi , s0)σ = (t2, s0)
◦σ

(θ does not affect)

(iv-c) R `cml (unit). Straightforward.

(v) Case ([].ξ). Similar to the case (congruence).

(vi) Case (let.ξ). Without loss of generality, we only consider let-normalized

equations. Suppose

cml
∀Γ . a1 = a′

1 : Tα1 ∀Γ, x : α1 . t = t′ : Tα2

∀Γ .

let x1 := a1 in
let x2 := a2 in
. . .
let xn := an in
t

=

let x1 := a′
1 in

let x2 := a′
2 in

. . .
let xn′ := a′

n′ in
t′

(let.ξ).

3.6. Soundness of the Translation ◦ 69

We will show

R′ ` g(−→zi , s0)ρ = g′(
−→
z′i , s0)ρ

where ρ is some ground substitution and

R′ def
= R◦ ∪Rb ∪

{∀−→zi , s0 . g(−→zi , s0) = (t, sn)◦ ⇐ (a1, s0)
◦ = 〈x1, s1〉, . . . , (an, sn−1)

◦ = 〈xn, sn〉

∀
−→
z′i , s0 . g′(

−→
z′i , s0) = (t′, s′n′)◦ ⇐ (a′

1, s
′
0)

◦ = 〈x1, s
′
1〉, . . . , (a′

n′ , s′n′−1)
◦ = 〈x′

n′ , s′n′〉}

By induction hypothesis,

R◦ ` ∀Γ, s0 : St . (a1, s0)
◦ = (a′

1, s0)
◦ : α × St, (3.1)

R◦ ` ∀Γ, s0 : St . (t, s0)
◦ = (t′, s0)

◦ : α × St. (3.2)

Let σ : Γ, s0 : St → TΣ be an arbitrary ground substitution. Then by

the definition of built-in interactive axioms, there exist ground terms

x̂1, ŝ1 with respect to R′ such that

R′ ` (a1, s0)
◦σ = 〈x̂1, ŝ1〉.

Next define a ground substitution σ1 : {x1 7→ x̂1, s1 7→ ŝ1}. Then there

exist ground normal forms x̂2, ŝ2 such that

R′ ` (a2, s1)
◦σσ1 = 〈x̂2, ŝ2〉.

Repeatedly, we have for some ground terms x̂n, ŝn,

R′ ` (an, sn−1)
◦σ · · · σn−1 = 〈x̂n, ŝn〉.

Hence, by defining ρ
def
= σ · · · σn−1, we have

R′ ` (a1, s0)
◦ρ = 〈x1, s1〉ρ, . . . ,R′ ` (an, sn−1)

◦ρ = 〈xn, sn〉ρ. (3.3)

Then, we can construct the following (slightly informal) proof.

(3.3)

g(−→zi , s0)ρ = (tn, sn)◦ρ
(ax.)

(3.3) (3.2)

(a′
1, s0)◦ρ = 〈x1, s1〉ρ, . . . , (a′

n, sn−1)◦ρ = 〈xn, sn〉ρ
(subst.)

g′(
−→
z′

i , s0)ρ = (t′n, sn)◦ρ

(ax.)

(3.2)

g′(
−→
z′

i , s0)ρ = (tn, sn)◦ρ

(tr.)

g(−→zi , s0)ρ = g′(
−→
z′

i , s0)ρ

(tr.)

g(−→zi , s0)σ = g′(
−→
z′

i , s0)σ

70 3. Interactive First-order FLP

¥

The translation ◦ is also sound for existentially quantified theorem in the

following sense.

Theorem 3.6.5

Let R be an interactive first-order FLP over an S-sorted signature Σ and Rb

a set of built-in interactive axioms over an S◦-sorted signature Σ◦. If

R `cml ∃∆ .
−−−−−−−→
ui = ti : αi

with an answer substitution θ : ∆ → TΣ, then

R◦ ∪ δ ∪
⋃

ζj ∪Rb ` ∃∆ . −→ei σ

where

• σ : (s0) → TΣ

• (−→ei , δ)
def
= (∃∆ .

−−−−−−−→
ui = ti : αi)

◦

• an answer substitution is θ◦ : ∆ → TΣ◦ such that θ◦(xj)
def
= v, where

∆ = (x1, . . . , xn) and (v, ζj)
def
= (θ(xj), s0)

◦ for each j = 1, . . . , n.

Proof Suppose R `cml ∃Γ . u = t : Tβ. By Herbrand’s theorem for the

computational metalanguage, there exists a ground substitution θ : Γ → TΣ

such that

R `cml uiθ = tiθ : αi for every i.

For each equation ui = ti, translate both sides of the equation as follows:

(u′
i, δi)

def
= (ui, s0)

◦

(t′i, ξi)
def
= (ti, s0)

◦

and δ
def
=

⋃
δi ∪

⋃
ξi. Note that this δ is the same as in (

−−−−→
u′

i = t′i, δ)
def
= (∃∆ .

−−−−−−−→
ui = ti : αi)

◦. Then we easily see that

(u′
i θ

◦, δi θ
◦) = (uiθ, s0)

◦

(t′i θ
◦, ξi θ

◦) = (tiθ, s0)
◦

3.7. Interaction and Solving Equations 71

where we obviously extend the notion of substitution to sets (δi and ξi). By

the soundness of the translation ◦ (Theorem 3.6.4), for an arbitrary ground

substitution σ : (s0) → TΣ,

R◦ ∪
⋃

ζj ∪ δ ∪Rb ` ∀∅ . u′
iθ

◦σ = t′iθ
◦σ for each i.

Hence

R◦ ∪
⋃

ζj ∪ δ ∪Rb ` ∃∆ .
−−−−−−→
u′

iσ = t′iσ.

¥

3.7 Interaction and Solving Equations

In this section, we discuss how interaction and solving in interactive FLP

are related. In Section 3.6, we showed that the translation ◦ was sound

translation. In view of solving of query, by this result we derive the following

completeness of narrowing for interactive functional-logic programs.

Theorem 3.7.1 (Completeness of narrowing for interactive FLPs)

Let R be an interactive first-order FLP over an S-sorted signature Σ, and Rb

a set of built-in interactive axioms over an S◦-sorted signature Σ◦. Suppose

R `cml ∃∆ .
−−−−−−−→
ui = ti : αi

with an answer substitution θ : ∆ → TΣ. We apply Theorem 3.6.5. Let

R′ = R◦ ∪ δ ∪
⋃

ζj ∪ Rb. If the substitution θ◦ determined by Theorem

3.6.5 is a normalizable answer substitution with respect to R′, then for every

(∃∆ . −→ei σ) ∈ E,

−→ei σ Ã∗
ρ,R′ >

where ρ 4 θ◦↓R′ [∆].

Proof

R `cml ∃∆ .
−−−−−−−→
ui = ti : αi

⇒ R′ ` ∃∆ . −→ei σ

⇔ R′ ` ∀∅ . −→ei σθ◦

⇔ eiσθ◦ →∗
R′ true

⇒ eiσ Ã∗
ρ,R′ > where ρ 4 θ◦↓R′ [∆].

¥

72 3. Interactive First-order FLP

The above result says that we can obtain the answer substitution of a

given query with respect to an interactive functional-logic program by using

conditional narrowing. However, there is a case that narrowing is not sound

for solving under interactive functional-logic programs. This is caused from

that the reverse implication of the soundness of the translation ◦ (Theorem

3.6.4) does not hold in general as we see below.

Example 3.7.2

We use the signature of Example 3.3.4 and skip:IO Unit ∈ Fun.

Interactive program R
main=let dummy:=skip in write(1)

Built-in interactive axioms Rb

skip(s) = ((),s)

Translated CTRS R◦

main(s0) = write(1,s1) ⇐skip(s0) = 〈dummy,s1〉
Then, we easily show that

R◦ ∪Rb ` ∀∅ . main(s) = write(1,s).

where s is an arbitrary constant of the type IntList. But

R 6`cml ∀∅ . main = write(1).

We will compare two logics, i.e. many-sorted conditional equational logic

and the computational metalanguage, with respect to the translation ◦.

From the above example, we see that many-sorted conditional equational

logic has more theorems than the computational metalanguage. The reason

is relatively clear because deduction in many-sorted computational equa-

tional logic needs to add the built-in interactive axioms (see Theorem 3.6.4),

i.e. adding more axioms yields more theorems. Adding built-in interactive

axioms is necessary for executing interactive functional-logic programs. If

we do not add these axioms, for example, read(s), where s is an arbitrary

constant of the type IntList, can not rewrite to a constructor term. By Theo-

rem 3.6.4, we can use the computational metalanguage as a formal system of

reasoning about interactive functional-logic program and such a correct rea-

soning is always simulated by conditional equational logic, or equivalently,

rewriting or narrowing.

3.7. Interaction and Solving Equations 73

Example 3.7.3

Consider the program R in Example 3.3.4 and the following validation in the

computational metalanguage.

R `cml ∃n:Int, c:IO Int . let x:=read in (let y:=write(n+x) in read)

= let z:=c in read : IO Int (3.4)

This can be considered as proving a property of the interactive program R.

We demonstrate the translation ◦ and the application of Theorem 3.6.5.

An example of answer substitution for Eq. (3.4) is

θ = {n 7→ 2 :Int, c 7→ (let x′ = read in write(2+x′)):IO Unit}

Equation 3.4 generates the following CTRS by the translation ◦,

δ =

{
g(n,s0) → read(s2): Unit × St ⇐ read(s0)=〈x,s1〉, write(u+x,s1)=〈y,s2〉
h(c,s0) → read(s1): Unit × St ⇐ c=〈z,s1〉

}
and the translated Eq. (3.4) in conditional equational logic is

∃n:Int × IntList, c:Unit × St . g(n,s) = h(c,s) : Unit × St

where s is an arbitrary constant of the type IntList, which can be considered as

some initial sequence of an input tape. Furthermore, the answer substitution

θ is translated into

θ◦ = {n 7→ 2:Int, c 7→ k(2,s):Int×St}

and the following additional rule is generated

ζ = {k(n,s0) → write(n+x′, s1) : Unit × St ⇐ read(s0) = 〈x′, s1〉}.

Then the translated Eq. (3.4) in conditional equational logic is

R◦ ∪ δ ∪ ζ ` ∃n:Int × St, c : Unit × St . g(n,s) = h(c,s):Unit × St. (3.5)

We see that θ◦ is actually an answer substitution for Eq. (3.5). For more

concrete setting, e.g., we set s =[5,9]. This means that the sequence “5,9” is

written in the input tape. Then we can use narrowing for Eq. (3.5) as follows

eq(g(n,[5,9]), h(c,[5,9])) Ã∗
ρ >

74 3. Interactive First-order FLP

where

ρ = {n 7→ 2, c 7→ 〈(), [9]〉, . . . }.

This answer substitution ρ means that in Eq. (3.4), the value n is 2, and the

computation c consists of the null value () and the resulting tape where “9”

is written. At this time, θ◦↓R′= ρ[∆].

3.8 Meaning Preservation of the Translation
◦

It is necessary to ensure that the translation ◦ preserves the intended mean-

ing of interaction. Intuitively it is clear from the ideas of this translation, but

the formal statement of the preservation requires some consideration because

• theories are changed by the translation,

• the required categories for models are changed by the translation, namely

– R is interpreted in an arbitrary cartesian closed category (ccc)

equipped with the strong monad for side-effects.

– R◦ is interpreted in an arbitrary category with finite products.

The problem is how to compare the original interactive FLP and the trans-

lated CTRS and how to state the equivalence of them. One idea to realize

such a comparison is to use the equivalence of categories [Mac71] between

the classifying categories (i.e. term models) Cl(R) and Cl(R◦) (cf. Definition

2.7.5).

Recall that two categories C and D are equivalent if there is a functor

F : C → D such that

• F is full and faithful (i.e. the arrow part of F is a one-to-one function),

• ∀d ∈ obj D,∃c ∈ obj C such that d ∼= F (c).

Now we see that Cl(R) and Cl(R◦) are not equivalent. To establish this

equivalence, we must define a one-to-one correspondence between types and

function symbols of Cl(R) and Cl(R◦). But this fails. From the definition of

3.8. Meaning Preservation of the Translation ◦ 75

the translation ◦, it is a natural idea to define a functor F : Cl(R) → Cl(R◦)

for equivalence by

Farr([[f]] : [[α1]] × . . . × [[αn]] → [[Tβ]])
def
= [[f]] : [[α1]] × . . . × [[αn]] × St → [[β]] × St.

To make F a functor, the corresponding object part is defined by

Fobj([[α1]] × . . . × [[αn]])
def
= [[α1]] × . . . × [[αn]] × St (3.6)

Fobj([[Tβ]])
def
= [[β]] × St. (3.7)

Then, Fob is not clearly one-to-one because a type which has “×St” at the end

of the product type in Cl(R◦) does not always correspond to a computational

type Tα in Cl(R) as we see in (3.6).

This disagreement is caused by the fact that the strong monad for side-

effects is defined by Tα
def
= St ⇒ α × St. In other words, although the type

Tα in Cl(R) should correspond to the function type St ⇒ α × St, there is

no such a function type in Cl(R◦) because R◦ is first-order (i.e. all types are

base types). In the translation ◦, although Tα is translated to α × St, this

is not one-to-one as discussed above.

To sum up, Cl(R) is not equivalent to Cl(R◦). But there is a correspon-

dence of arrows between Cl(R) and Cl(R◦). This is easily obtained by the

fact that the category Cl(R) is a cartesian closed, namely,

Cl(R)(α, Tβ) = Cl(R)(α, St ⇒ β × St)

∼= Cl(R)(α × St, β × St)

∼= Cl(R◦)(α × St, β × St).

The last isomorphism is clear from the definition of ◦.

76 3. Interactive First-order FLP

Chapter 4

Simply-typed Applicative FLP

In this chapter, we give semantics of a class of higher-order functional-logic

languages, called simply-typed applicative functional-logic languages. With

respect to syntax, we introduce function types and applicative terms to treat

function type data. We can view that this class of FLPs is syntactically

a first-order one, so we can directly reuse semantics of first-order FLP of

syntactic models, namely axiomatic, rewriting and the quotient term model.

But the cpo model of first-order FLP, the least Herbrand model, is not di-

rectly applicable to applicative case because of the presence of function type

terms. Since it is natural to interpret function type terms as (mathematical)

functions, we extend the least Herbrand model to include function spaces

as the semantic domain. This model is called minimal applicative Herbrand

model. We explain that the “no junk” property of semantic domain is im-

portant for correspondence between the minimal applicative Herbrand model

and narrowing. More precisely, we give correspondence between a syntactic

solution of a query by narrowing and a semantic solution in the model.

4.1 Simply-typed Applicative Conditional Equa-

tional Logic

In this section, we introduce syntax and a deduction system for simply-typed

applicative conditional equational logic in the same way as the first-order case

defined in Chapter 2.

Definition 4.1.1 (Signature)

We mainly follow the terminology of Meinke’s higher type universal algebra

78 4. Simply-typed Applicative FLP

[Mei92]. A set S of sorts and B of type basis are any nonempty sets. A set S

of sort is a set of types S over a type basis B if S = B∪{α ⇒ β | α, β ∈ S}.
Each element α ∈ B and each element of the form α ⇒ β ∈ S are termed a

base type and function type respectively. An S-typed signature Σ is a S-sorted

signature such that for each function type (α ⇒ β) ∈ S we have application

symbol apα⇒β : (α ⇒ β), α → β.

Definition 4.1.2

Let Σ be an S-applicative signature. An S-typed Σ-algebra is an S-sorted Σ-

algebra such that for each function type α ⇒ β ∈ S, the following conditions

are satisfied:

• Aα⇒β ⊆ (Aα ⇒ Aβ),

• apα⇒β
A : Aα⇒β ×Aα ⇒ Aβ, apα⇒β

A (f, t) = f(t).

The superscript of ap is often omitted.

In this chapter, we only consider typed signatures. Since a typed signature

is a particular many-sorted signature, all the definitions of syntactic objects

and results on many-sorted conditional equational logic presented in Chapter

2 are immediately applicable. Instead of repeating definitions syntax related

notations for typed signatures, we use the following terminology:

Sorted signature case Typed signature case
Raw term Applicative raw term
Well-typed term Applicative term
Term algebra TΣ(Γ) Applicative term algebra AT Σ(Γ)
Equation Applicative equation
Axiom Applicative axiom
CTRS Applicative CTRS
Many-sorted conditional equa-
tional logic

Simply-typed applicative condi-
tional equational logic

Quotient term algebra QR Quotient applicative term algebra
AQR

Note that we use that eq-term defined in Definition 2.2.11 is just the same

form eqα(s, t) for the function symbol eqα : α, α → Bool, not curried version

4.2. Simply-typed Applicative FLP in Equational Logic Framework 79

eqα : α ⇒ α ⇒ Bool, where ⇒ is right associative. We use the usual abbre-

viations on applicative terms, e.g., an applicative term ap(ap(f, ap(s, 0), 0) is

written in abbreviated form as f (s 0) 0.

Then the following propositions are immediately obtained as corollaries

of Theorem 2.3.4 and 2.3.6.

Corollary 4.1.3

Let R be a set of axioms. Then, AQR ∈ Mod(R) and

R ` ∀∅(s = t) ⇔ AQR |= ∀∅(s = t) ⇔ R |= ∀∅(s = t).

Moreover for any Σ-algebra A ∈ Mod(R), there exists a unique homomor-

phism φ : AQR → A.

Corollary 4.1.4

Let R be a set of axioms. Then,

R ` ∃∆(
−−−→
si = ti) ⇔ AQR |= ∃∆(

−−−→
si = ti) ⇔ R |= ∃∆(

−−−→
si = ti).

4.2 Simply-typed Applicative FLP in Equa-

tional Logic Framework

We define applicative FLP and its solving method in the framework of ap-

plicative conditional equational logic.

Definition 4.2.1 (Signature)

An S-sorted signature Σ for simply-typed applicative FLP consists of the

following three disjoint sets:

• {apα⇒β | α, β ∈ S} for application symbols,

• Con = {c : α1 ⇒ · · · ⇒ αn ⇒ β | α1, . . . , αn, β are base types} for

constructor symbols,

• Fun for defined function symbols,

and satisfies the following requirements:

• The sort set S contain the sort Bool.

• The signature Σ contains the following symbols:

80 4. Simply-typed Applicative FLP

– steqα : α ⇒ α ⇒ Bool ∈ Fun,

– & : Bool ⇒ Bool ⇒ Bool ∈ Fun,

– true : Bool ∈ Con.

Note that steq and & are curried function symbols and they are constant

symbols (i.e. arity 0) in first-orders sense. A term that does not contain

any occurrence of a defined function symbol is called applicative constructor

term.

Definition 4.2.2 (Applicative Strict Equality)

Let Σ be a signature for applicative FLP. The set of axioms ASTEQ is the

following.

∀∅(steqα c c = true) for each c : α ∈ Con,

∀−−−→xi : αi,
−−−→yi : αi . steqα (d x1 · · · xn) (d y1 · · · yn))

= (steqαi x1 y1) & · · · & (steqαi xn yn))

for each d : α1 ⇒ . . . ⇒ αn ⇒ α ∈ Con,

∀x : Bool(true & x = x).

We call an equation of the form (steqα s t) = true, where the terms s and t

do not contain any occurrence of steq, an applicative strict equation.

Definition 4.2.3 (Applicative FLP)

A set R of applicative axioms is called an applicative FLP or simply program

if R satisfies the following:

(i) R is built from a signature for many-sorted first-order FLP.

(ii) R is an orthogonal 3-CTRSs.

(iii) R contain the axioms ASTEQ.

Moreover, for each equation ∀Γ(l = r ⇐ −−−→
si = ti) in R, the following

condition is satisfied:

(i) l is the form f t1 · · · tn) where f ∈ Fun and t1, · · · , tn are applicative

constructor terms.

(ii) All the equations s1 = t1, . . . , sn = tn are strict equations.

4.2. Simply-typed Applicative FLP in Equational Logic Framework 81

Definition 4.2.4 (Query)

Let R be a program. A query of applicative FLP is an existentially quantified

equation of the form

∃∆(
−−−−−−−−−−→
steq si ti = true).

Execution of FLP is to prove the query under the program R as axioms by

obtaining witnesses, i.e.

R ` ∃∆(
−−−−−−−−−−→
steq si ti = true).

We can easily see that any applicative FLP is an orthogonal properly

oriented right-stable 3-CTRS. So we can use conditional narrowing as a sound

and complete solving method with respect to queries that have normalized

solutions.

Example 4.2.5

Assume the following signature:

plus : Nat ⇒ Nat ⇒ Nat,

map : (Nat ⇒ Nat) ⇒ NatList ⇒ Nat,

Nil : NatList, S : Nat ⇒ Nat, Cons : Nat ⇒ NatList ⇒ Nat

and a program consisting of an addition function on encoded natural numbers

and “map” function over list.

R =

∀y : Nat. plus 0 y = y

∀x,y : Nat. plus (S x) y = S (plus x y)
∀f : Nat ⇒ Nat. map f Nil = Nil

∀f : Nat ⇒ Nat, x : Nat, xs : NatList. map f (Cons x xs)
= Cons (f x) (map f xs).)

Under the program R, examples of queries are:

R |= ∃z : Nat . steq (plus (S 0) z) (S z) = true,

or

R |= ∃f : Nat ⇒ Nat . steq (map f [0, (S 0)]) [S 0, S (S 0)] = true.

Operational and algebraic semantics of the simply-typed applicative functional-

logic language will be concerned with this kind of query where solutions are

82 4. Simply-typed Applicative FLP

not only of base types but also of function types. Operational semantics of

narrowing for the applicative functional-logic program will return the answers

for the above queries as

z 7→ 0 or z 7→ S 0 or z 7→ S 0 or . . .

and

f 7→ S or f 7→ plus (S 0).

Corollary 4.2.6

Let R be an applicative FLP.

R ` ∀Γ(steq(sθ, tθ) = true)

for some normalized substitution θ : ∆ → TΣ

⇔ steq(s, t) Ã∗
θ′ true where θ′ 4 θ.

Since an applicative FLP is also a (particular) set of axioms, the following

is obtained from Theorem 2.3.4.

Corollary 4.2.7

Let R be an applicative FLP. Then AQR ∈ Mod(R).

4.3 Minimal Applicative Herbrand Model

In this section, we give an applicative version of the least complete Herbrand

model defined in Section 2.5 for first-order many-sorted FLP. This model

called minimal applicative Herbrand model provides the following natural

meaning of an applicative FLP:

• Data in applicative FLP are (infinite) constructor terms and functions

(not function symbols) defined by a program of an applicative term

rewriting system.

• Functions in a higher-order functional-logic programming are partial

functions on the domain of data.

• A query of a higher-order functional-logic programming is an existen-

tially quantified strict equation which can contain function type vari-

ables as quantified variables.

4.3. Minimal Applicative Herbrand Model 83

The soundness and completeness of narrowing with respect to the minimal

applicative Herbrand model show that such intuitive explanations are com-

pletely correct. The construction of the minimal applicative model is a rela-

tively natural extension of the least complete Herbrand model presented in

Section 2.5. We add function spaces to the semantic domains for interpreting

function types.

First we construct the applicative Herbrand universe.

Definition 4.3.1

Let Σ be a signature for applicative FLP. Define ACon
def
= Conα ∪ {⊥α :

α | α ∈ S}∪{apα⇒β | α, β ∈ S}. The applicative Herbrand universe of sort

α, AHα, is the set of all ACon-trees (c.f. Definition 2.5.1).

The set of ground applicative data terms of the sort α, ADα, is a proper

subset of the applicative Herbrand universe AHα by identifying them with the

compact and total elements of AHα, i.e. finite trees without any occurrence

of ⊥α.

Definition 4.3.2 (Applicative Herbrand Algebra)

A Σ-algebra A is called applicative Herbrand algebra if it satisfies the follow-

ing:

carrier:

AHα for each sort α.

operations:

cA : AHα1⇒...⇒αn⇒α,

cA t1 . . . tn = c t1 . . . tn

for each constructor symbols c : α1 ⇒ . . . ⇒ αn ⇒ α. And

fA is a continuous function in AHα

for each defined function symbol f : α ∈ Fun.

Definition 4.3.3

Let A be an applicative Herbrand algebra. For each α ∈ S, the order vAHα

on AHα is defined as:

s vAHα t
def⇐⇒ sα(x) v tα(x) for all x ∈ N∗

+.

84 4. Simply-typed Applicative FLP

Define AHerbAlg as the class of all applicative Herbrand algebras, and the

order vAHerbAlg on AHerbAlg as:

A vAHerbAlg B def⇐⇒ fA vAHα fB for each f : α ∈ Fun.

Proposition 4.3.4

For each α ∈ S, (AHα, vAHα) and (AHerbAlg, vAHerbAlg) are algebraic cpos.

Definition 4.3.5

Let Σ be an S-typed signature and R an applicative FLP. Define an operator

TR : AHerbAlg → AHerbAlg as:

TR(A)
def
= ({AHα | α ∈ S},

{{apα⇒β
A } | α, β ∈ S} ∪ ConA ∪ {ΦA(f) ∈ AHα | f : α ∈ Fun}).

For each f ∈ Funα1⇒...⇒αn⇒α, a mapping ΦA(f) : AHα1 ⇒ . . . ⇒
AHαn ⇒ AHα is defined as:

ΦA(f)(h1) · · · (hn)
def
=

δ#(r) if there exists (∀X(f l1 · · · ln = r
⇐ s1 = t1, · · · , sm = tm) ∈ R,

and δ : X → A,

for every i ∈ {1, · · · , n}, hi = δ#(li),

for every i ∈ {1, · · · ,m}, δ#(si) = δ#(ti),
⊥α otherwise.

The operator TR is a continuous function on AHerbAlg. This can be

proved by showing that each construct of TR is continuous similar to first-

order case. By the fixpoint theorem on cpos, TR has the least fixpoint

expressed as follows:

AHR
′ def

=
⊔
i∈N

TR
i(⊥AHerbAlg).

Theorem 4.3.6

AHR
′ is the least (with respect to vAHerbAlg) applicative Herbrand model of

a program R.

Proof It is proved in the same way as the first-order case [GLMP91, Ham95].

The carrier of AHR
′ contains many elements that cannot be denoted by

applicative terms. For example, consider a program R = {∀x : Nat(id x =

x)} and a query

R |= ∃f : Nat ⇒ Nat . steq (f 1) 1 = true

4.4. Soundness and Completeness 85

where the signature Σ consists of Con = {1 : Nat, true : Bool} and Fun =

{id : Nat ⇒ Nat, steqNat, . . . }. A witness of the above query in AHR
′ is

ξ : f 7→ idAHR
′ where idAHR

′ ∈ AHNat⇒Nat is the identity function on AHNat.

The witness ξ can be represented as a substitution θ : f 7→ id. This means

that the system of a applicative FLP can return an answer for the query as

the form of the applicative term id.

On the other hand, there exits another witness for the above query, which

is ζ : f 7→ ι where the function ι ∈ AHNat⇒Nat is defined as ι(x)
def
= 1. But the

witness ζ cannot be represented by any term substitution because the func-

tion ι ∈ AHNat⇒Nat is not a denotation of any applicative term constructed

from the signature Σ.

This unsatisfactory result is caused by the definition of the carrier of func-

tion types. Since the carrier AHNat⇒Nat is defined as the set of all continuous

functions on AHNat, ι is an element of AHNat⇒Nat in this example. So ι is a

witness of that query. However, in order to obtain the answer substitution

corresponding to the witness of queries, we will exclude such ι from the ad-

missible witnesses that cannot be represented by substitutions to applicative

terms. By minimizing the carrier of AHR
′ to the set only containing elements

that can be denoted by applicative terms, our intended model is obtained.

Formally, this is done as follows.

Definition 4.3.7

Let R be a program. The S-typed Σ-algebra AHR is the homomorphic image

of the unique homomorphism from AT Σ to AHR
′.

Then, we obtain the following.

Corollary 4.3.8

AHR is a model of a program R.

We call the Σ-algebra AHR minimal applicative Herbrand model . The

terminology “minimal” comes from the notion of minimal algebra [Mei92],

which is also called term generated in the literature. In other words, AHR

has “no junk” [MG85].

4.4 Soundness and Completeness

In this section we show that the minimal applicative Herbrand model is sound

and complete for the operational model of narrowing. The soundness and

86 4. Simply-typed Applicative FLP

completeness results stated here express the correspondence between a wit-

ness in the minimal applicative Herbrand model and a computed substitution

by narrowing.

Theorem 4.4.1 (Soundness of Narrowing for AHR)

Let R be a program and ∃∆(steq s t = true) a query. Then,

(steq s t) Ã∗
θ true

⇒ AHR |= ∃∆(steq s t = true)

with a witness δ : ∆ → AHR

where θ : ∆ → AT Σ(∆′) and δ = AHR[[]] ◦ ρ# ◦ θ for arbitrary substitution

ρ : Y → AT Σ.

Proof Suppose (steq s t) Ã∗
θ true. Then by the soundness of narrowing

for rewriting, for any substitution ρ : Y → AT Σ, (steq s t)θρ →∗
R true.

Then, AQR[[(steq s t)θρ]] = AQR[[true]]. Let φ : AQR → AHR be the unique

homomorphism. Since AHR[[]] = φ ◦ AQR[[]],

AHR[[]] ◦ ρ# ◦ θ (steq s t) = φ(AQR[[(steq s t)θρ]]) = φ(AQR[[true]]) = true.

Hence AHR |= ∃∆(steq s t = true). ¥

We define an S-indexed subclass AD = {ADα | α ∈ S} ⊆ AT Σ as

follows:

ADα def
= { all ground applicative constructor terms of base type α},

ADα⇒β def
= AT α⇒β

Σ for each α, β ∈ S.

This class D plays an intermediate role between AHR and AQR for witnesses.

Lemma 4.4.2

Let R be a program and ∃∆(steq s t = true) a query.

AHR |= ∃∆(steq s t = true)

⇒ AQR |= ∀∅((steq s t)ξ = true) for some ξ : ∆ → AD.

Proof Without loss of generality, we can assume that the typing context

∆ = (x1 : b1, . . . , xm : bm, y1 : α1, . . . , yn : αn) satisfies that each bi is base

4.4. Soundness and Completeness 87

type and each αj a function type. Correspondingly, suppose δ is a witness

in AHR such that

δ : xi 7→ hi ∈ AHbi for i = 1, . . . ,m

δ : yi 7→ fi ∈ AHαi for i = 1, . . . , n.

Then,

δ#(steq s t)

= (steq s t)AHR(h1, ..., hm, f1, ..., fn)

= (steq s t)AHR(
−−−−−−−−−−−−−−−−−→⊔

{zi | compact zi v hi}, f1, ..., fn)

=
⊔

{(steq s t)AHR(z1, ..., zm, f1, ..., fn) | compact zi v hi for each i = 1, ...,m}
(by the continuity of (steq s t)AHR)

= true (by assumption)

Therefore there exist compact elements ẑ1 ∈ AHb1 , ..., ẑm ∈ AHbm such that

(steq s t)AHR(ẑ1, ..., ẑm, f1, . . . , fn) = true.

Taking arbitrary elements d1 ∈ ADb1 , . . . , dn ∈ ADbm that satisfy d1 w
ẑ1, ..., dm w ẑm, we obtain

(steq s t)AHR(d1, ..., dm, f1, ..., fn) = true.

By the construction of AHR, for each fi, there exists ui ∈ AT Σ such that

AHR[[ui]] = fi. Define a substitution ξ : ∆ → TΣ as follows:

ξ
def
= {x1 7→ d1, ..., xm 7→ dm, y1 7→ u1, ..., ym 7→ um}.

Hence, we have

AQR |= ∀∅ ((steq s t)ξ = true).

¥

Theorem 4.4.3 (Completeness of Narrowing for AHR)

Let R be a program and ∃∆(steq s t = true) a query. If

AHR |= ∃∆(steq s t = true)

holds with a witness δ : ∆ → AHR then there exists

88 4. Simply-typed Applicative FLP

• a narrowing derivation (steq s t) Ã∗
θ true with an answer substitution

θ : ∆ → AT Σ(∆′),

• an assignment φ : AHR → AD that depends on δ and θ, and

• a substitution ρ : Y → AD that depends on θ and φ

such that

ρ# ◦ θ = φ ◦ δ.

Proof We will show that the following diagram commutes:

∆ ∆ ∆

δ

y yξ

yθ

AHR
φ−−−→ D

ρ#

←−−− AT Σ(Y)

where ξ is a mapping determined in the proof.

Suppose δ is a witness of ∃∆(steq(s, t) = true), i.e., δ : ∆ → AHR such

that δ#(steq(s, t)) = true. By Lemma 4.4.2, there exists an assignment

ξ : ∆ → D such that ξ#(steq s t) = true.

By the Axiom of Choice, there exists a function Ψ such that

Ψ(δ) = ξ.

Define a partial function φ : AHR → D such that

φ(h)
def
=

{
Ψ(δ)(x) if there exists x ∈ V(∆) such that δ(x) = h
undefined otherwise.

If there are many x satisfying the first clause of the above definition, we

choose the minimal x with respect to the element’s order in the sequence ∆.

Then, clearly ξ = φ ◦ δ. Since (steq s t)ξ →∗
R true, by the completeness of

narrowing for rewriting, there exists a narrowing derivation (steq s t) Ã∗
θ true

with an answer substitution θ : ∆ → AT Σ(Y) such that θ 4 ξ, i.e. there

exists a substitution

ρ : Y → AD such that ρ# ◦ θ = ξ.

Hence ρ# ◦ θ = φ ◦ δ. ¥

Chapter 5

Conclusion

In this thesis, we have given axiomatic, algebraic, operational, and categorical

semantics of first-order, interactive first-order, and higher-order functional-

logic programming languages. We have established the correspondence be-

tween these semantics by using existing results on equational logic and prov-

ing the following new results:

• equivalence of the quotient term model and the least complete Her-

brand model in algebraic semantics of many-sorted first-order FLP

(Theorem 2.6.7),

• soundness of the translation from interactive functional-logic programs

to CTRSs (Theorem 3.6.4, 3.6.5) in interactive first-order FLP,

• correspondence of the minimal applicative Herbrand model and condi-

tional narrowing (Theorem 4.4.3) in simply-typed applicative FLP,

As a summary, we give intuitive interpretations of the constructs of

functional-logic programming languages in several semantics we gave in this

thesis.

90 5. Conclusion

First-order functional-logic programming language:

Axiomatic semantics

logic many-sorted conditional equational logic
sorts sorts
terms terms
programs universally quantified equations
queries existentially quantified strict equations

Operational semantics

operation conditional narrowing
sorts sorts
terms terms
programs CTRSs
queries steq-terms to be narrowed

Algebraic semantics

models many-sorted Σ-algebras
sorts indexed set by each sort
terms elements in a Σ-algebra
programs definitions of operations of a Σ-algebra
queries questions asking values in a Σ-algebra for variables

Categorical semantics

models categories with finite products
sorts objects
terms arrows
programs equations between arrows
queries questions asking values in a Σ-algebra for variables

Interactive first-order functional-logic programming language:

The interpretations of sort, term, program and query are the same as in the

case of first-order functional-logic programming language.

91

Axiomatic semantics

logic the computational metalanguage
sequential computation nested let-terms

Operational semantics

operation conditional narrowing
sequential computation conditional part of a CTRS

Categorical semantics

models cartesian closed categories
with the strong monad for side-effects

sequential computation composition of arrows

Simply-typed applicative functional-logic programming language:

Axiomatic semantics

logic applicative conditional equational logic
sorts types (including function types)
terms applicative terms
programs universally quantified applicative equations
queries existentially quantified applicative equations

Operational semantics

operation conditional narrowing
sorts types (including function types)
terms applicative terms
programs CTRSs
queries steq-terms to be narrowed

Algebraic semantics

models typed Σ-algebras
sorts indexed set by each sort
terms elements (including function) in a typed Σ-algebra
programs (higher-order) function definitions
queries questions asking values in a Σ-algebra for variables

92 5. Conclusion

Bibliography

[AP95] P.M. Achten and M.J. Plasmeijer. The ins and outs of concur-

rent clean I/O. Journal of Functional Programming, 5(1):81–

110, 1995.

[Bar84] H. Barendregt. The Lambda Calculus, Its Syntax and Se-

mantics, volume 103 of Studies in Logic and the Foundations

of Mathematics. North-Holland, Amsterdam, revised edition,

1984.

[Bar96] H. Barendregt. Interactive functional programming. In Pro-

ceedings of Second Fuji International Workshop on Func-

tional and Logic Programming, pages 192–193. World Sci-

entific, 1996.

[Bar97] H. Barendregt. The impact of the lambda calculus in logic

and computer science. Bulletin of Symbolic Logic, 3(2):181–

215, June 1997.

[BK86] J. A. Bergstra and J. W. Klop. Conditional rewrite rules:

Confluence and termination. Journal of Computer and Sys-

tem Sciences, 32(3):323–362, 1986.

[BS93] E. Barendsen and S. Smetsers. Conventional and uniqueness

typing in graph rewrite systems. In In Proceedings of 13th

Conference on the Foundations of Software Technology and

Theoretical Computer Science (FST & TCS13), volume 761

of Lecture Notes in Computer Science, pages 41–51, 1993.

[CF58] H.B. Curry and R. Feys. Combinatory Logic, Volume I. Stud-

ies in Logic and the Foundations of Mathematics. North-

Holland, Amsterdam, 1958. Second printing 1968.

94 BIBLIOGRAPHY

[CHS72] H.B. Curry, J.R. Hindley, and J.P. Seldin. Combinatory

Logic, Volume II. Studies in Logic and the Foundations of

Mathematics. North-Holland, Amsterdam, 1972.

[Cro93] R.L. Crole. Categories for Types. Cambridge Mathematical

Textbook, 1993.

[Cur93] Curien, P.-L. Categorical Combinators, Sequential Algo-

rithms, and Functional Programming. Birkhäuser, second

edition, 1993.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In

J. van Leeuwen, editor, Handbook of Theoretical Computer

Science, volume B, pages 243–320. The MIT Press/Elsevier,

1990.

[Fri85] L. Fribourg. SLOG: a logic programming language inter-

preter based on clausal superposition and rewriting. In Pro-

ceedings of the 2nd IEEE Symposium on Logic Programming,

Boston, pages 172–184, 1985.

[GLMP91] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi.

Kernel-LEAF: A logic plus functional language. Journal of

Computer and System Sciences, 42(2):139–185, 1991.

[GM85] J. Goguen and J. Meseguer. Completeness of many-

sorted equational logic. Houston Journal of Mathematics,

11(3):307–334, 1985.

[GM86a] E. Giovannetti and C. Moiso. A completeness result for E-

unification algorithms based on conditional narrowing. In

Proceedings of the Workshop on Foundations of Logic and

Functional Programming, Lecture Notes in Computer Science

306, pages 157–167, 1986.

[GM86b] J. A. Goguen and J. Meseguer. EQLOG: equality, types

and generic modules for logic programming. In DeGroot

and Lindstrom, editors, Logic Programming: Functions, Re-

lations and Equations, pages 295–364. Prentice Hall, 1986.

BIBLIOGRAPHY 95

[GM87] J. Goguen and J. Meseguer. Models and equality for logical

programming. LNCS 250, pages 1–22, 1987.

[GMHGRA92] J.C. González-Moreno, M.T. Hortalá-González, and

M. Rodŕıguez-Artalejo. Denotational versus declarative

semantics for functional programming. LNCS 626, pages

134–148, 1992.

[Gor94] A. D. Gordon. Functional Programming and Input/Output.

PhD thesis, University of Cambridge, 1994.

[GTEJ77] J. Goguen, J. W. Thatcher, E.G.Wangner, and J.B.Wright.

Initial algebra semantics and continuous algebras. Journal

of the Association for Computing Machinery, 24(1):68–95,

1977.

[GTW75] J. Goguen, J. Thatcher, and E. Wagner. Abstract data types

as initial algebras and the correctness of data representations.

In Proceedings of Conference on Computer Graphics, Pattern

Recognition and Data Structure, pages 89–93, 1975.

[GTW76] J. Goguen, J. Thatcher, and E. Wagner. An initial algebra

approach to the specification, correctness and implementa-

tion of abstract data types. Technical Report RC 6487, IBM

T. J. Watson Research Center, 1976. Reprinted in: Yeh,

R. (ed.): Current trends in programming methodology IV.

Prentic-Hall 1987, pp. 80-149.

[Gun92] C.A. Gunter. Semantics of programming languages. The MIT

Press, 1992.

[GWMF96] J. Goguen, T. Winkler, J. Meseguer, and K. Futatsugi. In-

troducing OBJ. Cambridge, 1996.

[Ham95] M. Hamana. Semantics of a functional-logic language. Mas-

ter’s thesis, University of Tsukuba, 1995.

[Han90] M. Hanus. Compiling logic programs with equality. In Pro-

ceedings of the 2nd International Symposium on Program-

ming Language Implementation and Logic Programming,

Lecture Notes in Computer Science 456, pages 387–401, 1990.

96 BIBLIOGRAPHY

[Han94] M. Hanus. The integration of functions into logic program-

ming: From theory to practice. Journal of Logic Program-

ming, 19&20:583–628, 1994.

[Has97] M. Hasegawa. Models of Sharing Graphs. PhD thesis, Uni-

versity of Edinburgh, 1997.

[HKMN95] M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. Curry: A

truly functional logic language. In Proceedings of ILPS’95

Workshop on Visions for the Future of Logic Programming,

pages 95–107, 1995.

[HNN+94] M. Hamana, T. Nishioka, K. Nakahara, A. Middeldorp, and

T. Ida. A design and implementation of a functional-logic lan-

guage based on applicative term rewriting systems. Proceed-

ings of WGSYM, Information Processing Society of Japan,

94-SYM-73, pp.25–32, March 1994. In Japanese.

[Hul80] J. M. Hullot. Canonical forms and unification. LNCS 87,

1980.

[IO94] T. Ida and S. Okui. Outside-in conditional narrowing. IEICE

Transactions on Information and Systems, E77-D(6), 1994.

[JMMGMA92] J.C. González-Moreno, M.T. Hortalá-González, and M.

Rodŕıguez-Artalejo. On the completeness of narrowing as

the operational semantics of functional logic programming.

LNCS 702, pages 216–230, 1992.

[Kap84] S. Kaplan. Conditional rewrite rules. Theoretical Computer

Science, 33(2):175–193, 1984.

[KKSdV96] J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries.

On comparing curried and uncurried rewrite system. Journal

of Symbolic Computation, 21(1):15–39, 1996.

[Klo92] J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gab-

bay, and T. Maibaum, editors, Handbook of Logic in Com-

puter Science, volume 2, pages 1–116. Oxford University

Press, 1992.

BIBLIOGRAPHY 97

[Kow74] R. A. Kowalski. Predicate logic as a programming language.

Information Processing, (74):569–574, 1974.

[Llo87] J.W. Lloyd. Foundations of Logic Programming, second edi-

tion. Springer-Verlag, second edition, 1987.

[LPB+87] G. Levi, C. Palamidessi, P.G. Bosco, E. Giovannetti, and

C. Moiso. A complete semantics characterization of K-LEAF,

a logic language with partial functions. In Proceedings 1987

Symposium on Logic Programming, pages 318–327, Rockville,

MD, 1987. IEEE Computer Society Press.

[LS86] J. Lambek and P.J. Scott. Introduction to Higher Order Cat-

egorical Logic, volume 7 of Cambridge Studies in Advanced

Mathematics. Cambridge University Press, Cambridge, Eng-

land, 1986.

[Mac71] S. Mac Lane. Categories for the Working Mathematician,

volume 5 of Graduate Texts in Mathematics. Springer-Verlag,

New York, 1971.

[Man76] E.G. Manes. Algebraic Theories, volume 26 of Graduate Texts

in Mathematics. Springer-Verlag, New York, 1976.

[Mei92] K. Meinke. Universal algebra in higher types. Theoretical

Complete Science, 100:385–417, 1992.

[MG85] J. Meseguer and J.A. Goguen. Initiality, induction, and com-

putability. In M. Nivat and J. C. Reynolds, editors, Algebraic

methods in semantics, pages 459–541. Cambridge University

Press, 1985.

[MH94] A. Middeldorp and E. Hamoen. Completeness results for

basic narrowing. Applicable Algebra in Engineering, Com-

munication and Computing, 5(3/4):213–253, 1994.

[Mid90] A. Middeldorp. Modular Properties of Term Rewriting Sys-

tems. PhD thesis, Vrije Universiteit, Amsterdam, 1990.

[Mit96] J.C. Mitchell. Foundations for Programming Languages. The

MIT Press, 1996.

98 BIBLIOGRAPHY

[MNRA92] J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic pro-

gramming with functions and predicates: The language BA-

BEL. Journal of Logic Programming, 12:191–223, 1992.

[Mog88] E. Moggi. Computational lambda-calculus and monads.

LFCS ECS-LFCS-88-66, University of Edinburgh, 1988.

[Mog91] E. Moggi. Notions of computation and monads. Information

and Computation, (93):55–92, 1991.

[NMI95] K. Nakahara, A. Middeldorp, and T. Ida. A complete nar-

rowing calculus for higher-order functional logic program-

ming. In Proceedings of Seventh International Conference on

Programming Languages: Implementations, Logics, and Pro-

gramming 95 (PLILP’95), Lecture Notes in Computer Sci-

ence 982, pages 97–114, 1995.

[Pit95] A.M. Pitts. Categorical logic. In S. Abramsky, D. M. Gab-

bay, and T. S. E. Maibaum, editors, Handbook of Logic in

Computer Science, volume VI, chapter ? Oxford University

Press, 1995.

[Re91] J. Rees and W. Clinger (editors). Revised4 report on the

algorithmic language Scheme. ACM Lisp Pointers IV, July-

September 1991.

[Sco71] D.S. Scott. Towards a mathematical semantics for computer

languages. In J. Fox, editor, Computers ans Automata, pages

19–46. Polytechnic Institute of Brooklyn Press, 1971.

[SH97] T. Suzuki and M. Hamana. Logic programs as term rewriting

systems. Computer software, 14(6):29–43, November 1997.

[SMI95] T. Suzuki, A. Middeldorp, and T. Ida. Level-confluence of

conditional rewrite systems with extra variables in right-hand

sides. In Proceedings of the 6th International Conference

on Rewriting Techniques and Applications, Lecture Notes in

Computer Science 914, pages 179–193, 1995.

BIBLIOGRAPHY 99

[Suz98] T. Suzuki. Studies on Conditional Narrowing for Rewrite

Systems with Extra Variables. PhD thesis, University of

Tokyo, 1998.

[vBSB93] S. van Bakel, S. Smetsers, and S. Brock. Partial type as-

signment in left linear applicative term rewriting systems. In

M. R. Sleep, M. J. Plasmeijer, and M. C. J. van Eekelen,

editors, Term Graph Rewriting: Theory and Practice, pages

15–29. Wiley, Toronto, 1993.

[Wad90] P. Wadler. Comprehending monads. In ACM Conference

on Lisp and Functional Programming, pages 61–78, Nice,

France, June 1990.

[Wec92] W. Wechler. Universal algebra for computer scientists.

Springer-Verlag, 1992.

[YALSM97] T. Yamada, J. Avenhaus, C. Loria-Saenz, and A. Middel-

dorp. Logicality of conditional rewrite systems. In Proceed-

ings of the 22nd International Colloquium on Trees in Algebra

and Programming (CAAP’97), Lecture Notes in Computer

Science 1214, pages 141–152, 1997.

Index

Σ-algebra . 19

3-CTRS . 23

algebraic . 34

answer substitution 26

applicative constructor term . . . 80

applicative FLP.80

applicative Herbrand algebra . . . 83

applicative strict equation.80

arity . 18

assignment. .20

axiom. .21

base type . 78

built-in interactive axiom 65

built-in interactive function sym-

bol . 65

compact . 34

complete Herbrand algebra.35

complete Herbrand universe 34

computational signature 53

computations 52

Con⊥-tree . 34

conditional equation 21

Conditional equational logic. . . .21

conditional term rewriting system

23

confluent. .24

constant symbol 18

constructor symbol.31

constructor term 31

context . 23

conversion . 24

cpo . 34

CTRS . 22

defined function symbol 31

empty . 18

equivalent. .74

existentially quantified equation21

first-order FLP 31

function symbol 18, 31

function type 78

ground. .18

initial algebra 20

interaction . 13

interactive FLP 57

interactive FLP signature 57

interactive function symbol 66

Kleisli triple 55

linear . 18

many-sorted first-order FLP . . . 31

minimal applicative Herbrand model

85

model 29, 44, 56

monad . 55

normal form 24

INDEX 101

normalizable 24

normalized 24, 28

null typing context 18

orthogonal . 24

positions . 23

program . 80

properly oriented 24

proved term.18

query . 9, 32, 81

quotient term model 30

raw terms. .18

rewrite rule . 23

right-stable . 25

side-effects . 59

signature . 18

sorts . 18

source sort . 18

state . 59, 62

strict equation 31

strong monad 55

structure. .43

substitution . 20

subterm . 23

target sort . 18

term . 18

term algebra 20

terminating . 24

theorem . 21

total . 34

type basis .78

typed signature 78

types . 52

typing context 18

undefined . 20

valid . 29, 44

validity . 56

value . 52

well-typed term 18

witness . 29

