
Mathematical Structures in Computer Science (2022), 1–32
doi:10.1017/S0960129522000287

PAPER

Complete algebraic semantics for second-order rewriting
systems based on abstract syntax with variable binding
Makoto Hamana

Faculty of Informatics, Gunma University, Maebashi, Japan
Email: hamana@gunma-u.ac.jp

(Received 21 March 2021; revised 19 August 2022; accepted 23 August 2022)

Abstract
By using algebraic structures in a presheaf category over finite sets, following Fiore, Plotkin and Turi,
we develop sound and complete models of second-order rewriting systems called second-order computa-
tion systems (CSs). Restricting the algebraic structures to those equipped with well-founded relations, we
obtain a complete characterisation of terminating CSs. We also extend the characterisation to rewriting on
meta-terms using the notion of �-monoid.

Keywords: Term rewriting; higher-order rewriting; termination; algebraic models; higher-order abstract syntax

1. Introduction
In 1998, Gordon Plotkin presented the theory of binding algebras (Plotkin, 1998), which aimed at
applying ideas in universal algebra to type theory. It can be read as a possibility of a new algebraic
foundation of rewriting systems on higher-order terms.

Aczel has developed a general framework of rewrite rules for calculi with variable binding called
the Contraction Scheme (Aczel, 1978). Plotkin’s programme of binding algebras later produced
the notion of�-monoid (Fiore et al., 1999). It is noteworthy that the free �-monoids constructed
in the author’s earlier work (Hamana, 2004) are the same as the syntax of ‘meta-expressions’
defined by Aczel.

This similarity suggests that�-monoids might be qualified as a semantics of rewriting systems
on abstract syntax with variable binding. Based on this idea, in this paper, we present a complete
algebraic semantics of second-order rewriting systems called second-order computation systems
(CSs) and apply it to the model-based termination proof technique of second-order CSs.

1.1 Higher-order abstract syntax and rewriting on higher-order terms
An earlier general work on rewriting systems on higher-order terms was done by Aczel (1978).
He developed a system called the Contraction Scheme. Influenced by this, Klop proposed a gen-
eral system called the Combinatory Reduction Systems (Klop, 1980). Mayr and Nipkow (1998)
proposed a format of rewriting systems on higher-order terms, the higher-order rewrite system,
which is a rewriting system modulo βη-equivalence and which uses the simply typed λ-calculus
as a meta-language. This system is designed to be applicable to proof checkers and theorem prov-
ing systems because it is equipped with the typed λ-calculus. Blanqui, Jouannaud, and Okada

© The Author(s), 2022. Published by Cambridge University Press

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287
https://orcid.org/0000-0002-3064-8225
mailto:hamana@gunma-u.ac.jp
https://doi.org/10.1017/S0960129522000287

2 M. Hamana

proposed a rewriting system with stronger type system and λ-calculus (Blanqui et al., 1999, 2002)
and added rewriting rules. Using the reducibility technique, they have developed techniques for
proving termination.

In the field of automated theorem proving, there is an encoding technique called higher-order
abstract syntax (HOAS) (Despeyroux et al., 1995; Pfenning and Elliott, 1988). This is a technique
for coding binding data structures, especially object-level formulas, using the proof checker’s λ-
calculus as the meta-language. This idea is intuitive, but there was a fundamental problem: it is
difficult to apply induction to HOAS.

No report of the relevant literature has seriously discussed HOAS and rewriting on higher-
order terms in the same context. However, the basic idea is quite similar because both use the typed
λ-calculus as the meta-language. Therefore, rewriting on higher-order terms can be regarded as
rewriting on HOAS. The difficulty of applying induction to HOAS also appears in a different way
in the field of rewriting systems on higher-order terms. It is fundamentally related to the fact that
the models (van de Pol, 1994, 1996) given to date for proving termination of rewriting systems
on higher-order terms are not complete. This is because they both use a certain function space
to model the object language, which makes it difficult to apply induction and which makes it
impossible to construct the term model for completeness. Therefore, finding a complete model
for rewriting on higher-order terms requires a good model for HOAS. Plotkin et al. in their theory
of binding algebras (Fiore et al., 1999) made a breakthrough in solving this problem on HOAS.
They characterised HOAS, that is, abstract syntax with variable binding, as an initial algebra in a
presheaf category and established an induction principle on abstract syntax with variable binding.

1.2 Algebraic models of structured operational semantics and variable binding
The theory of binding algebras by Plotkin et al. (1998) was presented at the international confer-
ence on rewriting systems in 1998, RTA’98, the year before their LICS paper (Fiore et al., 1999).
In this sense, a connection exists between the theory of binding algebras and rewriting systems on
higher-order terms.

Plotkin’s work on binding algebras can be traced back to his algebraic work on the well-known
operational semantics format structural operational semantics (SOS). SOS is a system for for-
mally specifying the computation steps in programming languages and concurrent systems and
has become a fundamentally important tool in the theoretical study of programming languages.
Plotkin and Turi used the algebraic semantics of the SOS format to automatically derive a coinci-
dence between the denotational semantics and the operational semantics of the language given by
SOS. The language used in this study is the GSOS format of SOS, which is given by a first-order
syntax and which contains no binding syntactic structures. Therefore, the structure of universal
algebra and coalgebra was used. Extending this result to cover variable binding constructs is a
necessary next step. It was mentioned as a plan in Turi and Plotkin (1997), because variable bind-
ing is an important syntactic construct in that programming languages and concurrent systems
that are the main targets of SOS. Therefore, the theory of binding algebras by Plotkin et al. can be
regarded as a preparatory step for the study of algebraic models of SOS that use expressions with
variable binding. The present study can be regarded as one by which this idea is applied not to
SOS but to rewriting systems. It becomes an appropriate algebraic model for rewriting systems on
higher-order terms.

1.3 Rewriting systems and operational semantics
The operational semantics given by SOS and the theory of rewriting systems where the first-order
term rewriting system (TRS) is the most common formalism have several similarities: they both

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

Mathematical Structures in Computer Science 3

give relations of computation steps. However, as research fields, their work has proceeded almost
independently of each other without any close connection. One reason for their lack of connection
is that SOS covers a wide variety of expressions, allowing variable binding and substitutions,
whereas TRS is restricted to first-order terms.

The theory of rewriting has accumulated numerous useful concepts and results. If it can be
applied directly to the study of operational semantics without complicated encoding, it will be
useful as a foundational theory of computation and programming languages.

As well as the substantive aim of providing a complete model for the termination of second-
order CSs, the more conceptual aim of this paper is to provide a step towards bringing
the theory of TRS and the theory of SOS closer together by providing algebraic models of
second-order CSs.

Contributions. This paper is the fully reworked and extended version of the conference paper
(Hamana, 2005). In this paper, we establish complete algebraic semantics of second-order
rewriting systems called second-order CSs.

The complete characterisation of terminating CSs provides a method of proving the termina-
tion of CSs by algebraic interpretation. The following CS C for conversion into prenex normal
form, that is, pushing quantifiers outside, is a typical example of rewrite rules that require the
feature of variable binding (van de Pol, 1996):

P ∧ ∀(x.Q[x]) ⇒ ∀(x.P ∧Q[x]) ∀(x.Q[x])∧ P ⇒ ∀(x.Q[x]∧ P)
P ∨ ∀(x.Q[x]) ⇒ ∀(x.P ∨Q[x]) ∀(x.Q[x])∨ P ⇒ ∀(x.Q[x]∨ P)
P ∧ ∃(x.Q[x]) ⇒ ∃(x.P ∧Q[x]) ∃(x.Q[x])∧ P ⇒ ∃(x.Q[x]∧ P)
P ∨ ∃(x.Q[x]) ⇒ ∃(x.P ∨Q[x]) ∃(x.Q[x])∨ P ⇒ ∃(x.Q[x]∨ P)
¬∀(x.Q[x]) ⇒ ∃(x.¬(Q[x])) ¬∃(x.Q[x]) ⇒ ∀(x.¬(Q[x]))

Existing proof methods in the theory of higher-order rewriting to the CS C are not straightfor-
wardly applicable (Jouannaud and Rubio, 2001). Alternatively, they require consideration of an
involved function space to interpret binders (van de Pol, 1994, 1996). The present paper provides
a simpler method of showing termination of CS such as C, as shown in Example 9.7.

Organisation. This paper is organised as follows. We first review the technical background of our
semantics in Section 2. We formally define second-order CSs in Section 3. Section 4 gives alge-
braic semantics of CS’ syntax and valuations. Section 5 gives algebraic semantics of CS’ rewriting.
Section 6 gives algebraic semantics of CS’ meta-rewriting. Section 7 shows that a known model
of higher-order rewrite rules given by hereditary monotone functionals is an instance of our
algebraic models. Finally, in Section 9, we investigate the termination of binding CSs and show
examples of termination proofs using algebraic models.

2. Background on Algebraic Semantics of Second-order Abstract Syntax
In this section, we review the technical basis of our semantics, that is., the algebraic models of
abstract syntax with binding (Fiore et al., 1999) and metavariables (Hamana, 2004), also called
second-order abstract syntax (Fiore, 2008), and explain why this is suitable for modelling second-
order CSs.

Moreover, as we will see in the next subsection and Example 3.2, second-order abstract syntax
can encode λ-terms of arbitrary order (not only second-order). So, second-order abstract syntax
and second-order CSs are suitable for modelling calculi using higher-order terms.

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

4 M. Hamana

2.1 Introduction to second-order abstract syntax
2.1.1 Object andmetavariables
Second-order CSs are founded on second-order abstract syntax. We introduce second-order
abstract syntax. We first explain the distinction between object variables and metavariables, which
is important for our modelling of CSs. For example, consider a λ-term

λx.(My)
in a certain mathematical context. Here ‘x’ and ‘y’ are λ-calculus variables (i.e. object-level vari-
ables, because now the λ-calculus is the object system), while at the level of text, ‘M’ is a
meta-level variable. We distinguish ‘object-level variables’ and ‘metavariables’ in this sense and
call ‘object-level variables’ simply ‘variables’.

2.1.2 Metavariables with arities
Metavariables have also the notion of arities. For example, writing

λx.(M[x] y) (1)
we mean thatM may contain the variable x. In this case, we say that the metavariableM has arity
1. We formalise this notion of metavariables in this paper.

2.1.3 Function symbols with binding arities
Second-order abstract syntax provides a general framework for syntax with variable binding by
a signature consisting of ‘function symbols with binding arities’. In second-order abstract syntax,
the λ-abstraction is not a primitive construct. The above λ-term is encoded by using second-order
abstract syntax as follows:

abs(x.app(M[x], y))
where x.− is the primitive variable binding construct of second-order abstract syntax. Here we
assume that app is a function symbol with binding arity 〈0, 0〉, which means that app takes two
arguments and each argument binds no variable, and abs is a function symbol with binding arity
〈1〉, which means that it takes one argument and the argument has one variable binding. We call a
term like abs(x.app(M[x], y)) ameta-termmeaning that a term involvingmetavariables. Likewise,
using a function symbol λ with binding arity 〈1〉 and an infix function symbol @ with arity 〈0, 0〉,
we can construct a meta-term λ(x.M[x]@y), which is closer to the familiar notation (cf. Example
3.2).

2.1.4 Convention on α-equivalence
For a formal treatment of named variables modulo α-equivalence, we assume the method of de
Bruijn levels (de Bruijn, 1972; Fiore et al., 1999; Lescanne and Rouyer-Degli, 1995) for the naming
convention of variables. However, keeping de Bruijn level notation strictly is clumsy, especially in
examples. Hence, we sometimes use the following convention: any term appearing in this paper
hereafter is automatically normalised to a de Bruijn level α-normal form suitably. For example,
λ(x.λ(y.y@x)) means λ(1.λ(2.2@1), and λ(x.M[x]) to mean λ(1.M[1]), For metavariables, we use
ordinary named notation and do not use de Bruijn levels.

2.2 The presheaf category SetF

In modelling second-order abstract syntax, we use a framework of categorical algebra using
presheaves. First we explain presheaves used in this paper. The category F has finite cardinals
n= {1, . . . , n} (n is possibly 0) as objects, and all functions between them as arrows n→ n′.

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

Mathematical Structures in Computer Science 5

The category SetF plays a central role in the algebraic models of syntax with variable binding
(Fiore et al., 1999; Tanaka and Power, 2006). The objects of it are functors F→ Set and the arrows
are natural transformations between them. An object A of SetF is called a presheaf and is written
as A ∈ SetF.

Amap between presheavesA, B ∈ SetF is a natural transformation f :A � B, that is, a family
of functions of the form f (n) :A(n) � B(n) parameterised by all n ∈N thatmakes the naturality
diagram commute

m A(m)
f (m) � B(m)

n

ρ

�
A(n)

A(ρ)
�

f (n)
� B(n)

B(ρ)
�

2.3 Algebraic model of abstract syntax and variable binding
In their seminal paper, Fiore et al. (1999) investigated algebraicmodels of abstract syntax involving
variable binding. A typical example of such a syntax is the syntax for untyped λ-terms:

x1, . . . , xn � xi
x1, . . . , xn � t x1, . . . , xn � s

x1, . . . , xn � t@s

x1, . . . , xn, xn+1 � t
x1, . . . , xn � λ(xn+1.t)

This is an abstract syntax generated by three constructors, that is, the variable former, the applica-
tion @ and the abstraction λ. The point is that @ is a binary function symbol, but λ is not merely
a unary function symbol. It also makes the variable xn+1 bound and decreases the context. This
can be formulated by the function symbols with binding arities given in Section 2.1.3. In order to
model the phenomenon of variable binding generally (not only for λ-terms), Fiore, Plotkin and
Turi took the presheaf category SetF to be the universe of discourse. This is regarded as the cate-
gory of object variables (regarded as contexts) by the method of de Bruijn index/level (i.e. natural
numbers) and their renamings. A main result in Fiore et al. (1999) is that abstract syntax with
variable binding is characterised as an initial algebra of suitable endofunctor generated by a sig-
nature (e.g. for λ-terms). Now a function symbol with binding arity, denoted by f : 〈n1, . . . , nl〉,
has l arguments and binds ni variables in the i-th argument (1≤ i≤ l). A signature� is a set � of
function symbols with binding arities.

For example, for abstract syntax of λ-terms, we take a signature � consisting of λ : 〈1〉 and
an infix function symbol @ : 〈0, 0〉, as described in Section 2.1.3. The corresponding signature
endofunctor �λ on SetF is �λ(A)=V+A×A+ δA where each summand corresponds to the
arity of function symbol where the context extension is defined by (δA)(n)=A(n+ 1), and the
presheaf V ∈ SetF of variables is V(n)= {1, . . . , n}.

In general, given a signature�, we also denote by� the corresponding signature endofunctor1
defined like �λ (more precisely, see Definition 4.1). A �-algebra is a pair (A, α) consisting of a
presheaf A and a map α :�A→A, called an algebra structure that provides the interpretations
of constructors. An initial �λ-algebra (, in) can be constructed inductively as the presheaf 	 of
all λ-terms modulo α-equivalence with free variable renaming. The initial algebra directly models
the abstract syntax with binding, namely

a judgment n � t is modelled as t ∈	(n),

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

6 M. Hamana

and renaming of free variables ρ : n→ n′ in a λ-term is modelled by the presheaf action 	(ρ) :
	(n)→	(n′). Under the method of de Bruijn levels, n means the set of variables from 1 to n.
This is a generic way of modelling abstract syntax with binding with respect to a signature functor
�. However, the method is limited to modelling of object-level abstract syntax.

2.4 Free�-monoids: second-order abstract syntax with metavariables
Not only object-level abstract syntax, how can we deal with metavariables and the distinction of
substitutions for object and metavariables in the algebraic model of syntax with binding? This
problem was explored in Hamana (2004); Fiore (2008) and a clear answer has been obtained.

Given a signature functor �, a �-monoid (Fiore et al., 1999) is a �-algebra (A, α) with a
monoid structure

V ν� A �μ A •A
that is compatible with the algebra structure in the monoidal category (SetF, •, V)2. The unit
ν models the variable former, and the multiplication μ models substitution for object variables,
where the monoidal product • gives the arity of substitution.

An important structure is a free �-monoid generated by an arbitrary presheaf Z, where gener-
ators Z is regarded as the presheaf of metavariables. A free �-monoid over Z ∈ SetF, denoted by
M�Z, is constructed inductively as an initial (V+� + Z • −)-algebra, which gives the language
involving binding andmetavariables. Terms of this language are expressed as the following BNF:

M�Z(n) � t ::= x | f (n+1.n+i1.t1, . . . , n+1.n+im.tm) | M[t1, . . . , tm] (2)
Z(m) �M

where x ∈ {1, . . . , n} and each f ∈� is a function symbol that binds ij variables at the j-th argu-
ment. This characterisation shows that the functor V+� models syntax with binding (as in
Section 2.1.1) and the functor Z • − models the syntactic construct of metavariables represented
as a term

M[t1, . . . , tm]

where M ∈ Z(m) is a metavariable and the index m, called also arity, which denotes possible free
variables 1, . . . , l appearing in a term substituted forM. Terms t1, . . . , tm are replacements of the
free variables 1, . . . ,m after instantiatingM. For example, a substitution that replaces a metavari-
able M with a term 1@1 (where 1 is a free variable) is formulated as map θ from the presheaf Z
of metavariables to M�Z, which maps the metavariable M as θ(M)= 1@1. Then applying it to a
term λ(x.M[x] @ y)

θ�(λ(x.M[x] @ y))= λ(x. (x@x) @ y) (3)

is a substitution process. The freeness of M�Z states that given θ , there uniquely exists the
extension θ� to a�-monoid morphism that makes the following diagram commute:

Z
ηZ� M�Z
�
�θ �

A

θ�

�

The general form of freeness is stated for an arbitrary�-monoidA. To consider the syntactic case,
we take A=M�Z. Then, the notion of substitution of metavariables appears. This is syntactically
understood as that θ is an assignment for substitution and θ� is the corresponding substitution of
terms for metavariables. For (3), we put the metavariableM ∈ Z(1).

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

Mathematical Structures in Computer Science 7

Remark 2.1. Aczel first introduced the syntactic structure of meta-terms and substitution for
abstract syntax with variable binding (Aczel, 1978). This formal language allowed him to con-
sider a general framework of rewrite rules for calculi with variable binding. Hamana clarified
the algebraic semantics of it using �-monoids (Hamana, 2005), extended it to simply typed
case (Hamana, 2007). Fiore (2002) and Miculan and Scagnetto (2003) gave the simply typed and
algebraic characterisation of abstract syntax with binding and substitution. Fiore and Hur (2010);
Fiore and Mahmoud (2010) considered algebraic theories for second-order equational presenta-
tions. Hamana (2011) gave a polymorphic and algebraic characterisation of abstract syntax with
variable binding. Fiore and Hamana (2013) formulated polymorphic algebraic theories.

Notation 2.2. We denote by f (n+ −→i1 .t1, . . . , n+ −→im .tm) to mean

f (n+1 · · · n+i1.t1, . . . , n+1 · · · n+im.tm).

We abbreviate the words left-hand side as ‘lhs’, right-hand side as ‘rhs’, first-order as ‘FO’ and
higher-order as ‘HO’.

A binary relation> is well-founded if there is no infinite decreasing sequences a1 > a2 > · · · .

3. Second-Order CSs
In this section, we introduce the framework of mono-sorted second-order CSs as a computational
counterpart of second-order algebraic theories (Fiore and Hur, 2010; Fiore and Mahmoud, 2010).

We formally define second-order CSs as follows.
(i) A function symbol with (binding) arity, denoted by f : 〈n1, . . . , nl〉, has l arguments and

binds ni variables in the i-th argument (1≤ i≤ l). A signature � is a set � of function
symbols with binding arities.

(ii) Let Z be an N-indexed set of metavariables parameterised by arities, where each Z(n) is a
set of n-ary metavariables. We may denote by M(n) an n-ary metavariable M ∈ Z(n). We
may simply use the set-notation to describe an N-indexed set Z. For example, writing Z =
{M(1),N(2)}, we mean Z(1)= {M}, Z(2)= {N}, and Z(i)=∅ for all i �= 1, 2.

(iii) The raw meta-terms are given by the grammar:

t ::= x | x.t | f (t1, . . . , tn) | M[t1, . . . , tn].

The last formM[t1, . . . , tn] is called ameta-application.
(iv) A judgment is of the form

Z � n � t

where Z is an N-indexed set of metavariables. When Z is empty, we may write � n � t or
simply write n � t.

(v) A well-formed meta-term t is a raw meta-term such that a judgment Z � n � t is derived
by the rules in Figure 1 for some Z, n. By these rules, a meta-term always follows the method
of de Bruijn levels. Hereafter, we only deal with well-formed meta-terms.

(vi) A term t is a raw meta-term such that a judgment � n � t is derived by the rules in
Figure 1 for some n. Namely, a term t is a meta-term without metavariables.

(vii) An assignment θ is a mapping that assigns to an n-ary metavariable M a meta-term s as
θ : M � swhere Z � n+ k � s and for some k ∈N. The same k is used for the present
θ and all metavariables M in Z, considered as additional free variables n+ 1, . . . , n+ k
appearing in s.

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

8 M. Hamana

Figure 1. Typing rules of meta-terms.

Figure 2. Second-order rewriting (one-step).

We may denote an assignment θ by the notation θ = [M1 �→ a1, . . . ,Ml �→ al]. An assign-
ment is extended to a substitution θ� for metavariables. By the notation

θ�(t)

we mean that a meta-term obtained by replacing every meta-application M[t1, . . . , tn] in t
with a meta-term s whose free variables 1, . . . , n are replaced with t1, . . . , tn. In this substi-
tution process, to avoid unintended capture of free variables by a binder, variables may be
suitably shifted according to the method of de Bruijn levels.

(viii) For meta-terms Z � 0 �
 and Z � 0 � r using a signature�, a rewrite rule is of the form
Z � 0 �
 ⇒ r satisfying:
(a)
 is a term of the form f (t1, . . . , tn), including the case n= 0.
(b) all metavariables in r occur in
.
These are ordinary syntactic conditions of rewrite systems to make them computation-
ally meaningful (Mayr and Nipkow, 1998). Without them, a rule like M ⇒ a or a⇒M is
allowed, which collapses any term into a, or a generates any term. Since it admits a looping
rewrite a→C a, we impose these conditions. Note also that
 and r are meta-terms without
free variables (because they are in the context 0) but may have freemetavariables taken from
Z.

(ix) A CS is a tuple (�, C, Z) of a signature, a non-empty set C of rewrite rules consisting of
�-meta-terms and an N-indexed set Z of all metavariables occurring in C satisfying

Z ⊇
⋃

(Zi � 0�
⇒ r) ∈ C
Zi.

We assume that the rules use disjoint sets Zi of metavariables. If not, we implicitly use
suitable renamed variants of rules. We may simply write a CS by C if� and Z are inferable.

(x) A one-step rewrite � n � s→C t is a judgment generated from a given CS C by using the
inference rules in Figure 2. (Rule) instantiates a rewrite rule by replacing metavariables with
terms. Hence, a rewrite step is defined on terms, not containing anymetavariables.We often
simply write a rewrite s→C t and regard →C as a binary relation on terms.

Remark 3.1. In the previous formulations (Hamana, 2017, 2019; Hamana et al., 2020), the
lhss of second-order rewrite rules are restricted to Miller’s higher-order patterns at second order

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

Mathematical Structures in Computer Science 9

(Miller, 1991), or their slight extension of deterministic second-order patterns (Libal and Miller,
2016; Yokoyama et al., 2003, 2004). Second-order patterns are meta-terms in which every occur-
rence of a meta-application is of the form M[x1, . . . , xn], where x1, . . . , xn are distinct bound
variables. Second-order patterns are useful in view of algorithmic account of CSs because there
exists the most general unifier for a solvable unification problem, and an efficient unification
algorithm is known (Miller, 1991).

But in view of algebraic semantics, the restriction is unnecessary, hence in this paper we con-
sider a more general syntactic form of rewrite rules that allows non-pattern lhss. Such rules have
also appeared in the literature, which we will see in Example 5.11 and Section 7.5.

Example 3.2. (Untyped λ-calculus) The signature�λ for untyped λ-calculus is given by

λ : 〈1〉, @ : 〈0, 0〉
The CS C for untyped λ-calculus is given by the β and η rules:

M(1),N(0) � 0 � λ(x.M[x])@N ⇒ M[N]
M(0) � 0 � λ(x.M@x) ⇒ M

Using C, we have a one-step rewrite

� y � λ(x.x@y)@(λ(z.z))→C λ(z.z)@y
using θ :M �→ x@y, N �→ λ(z.z). Formally, in de Bruijn levels, this is derived by

(Rule)

� 2 � 2@1 � 1 � λ(2.2) θ = [M(1) �→ 2@1, N(0) �→ λ(2.2)]
(M(1),N(0) � 0 � λ(1.M[1])@N ⇒M[N]) ∈ C

�1 � λ(2.2@1)@(λ2.2)→C λ(2.2)@1

Example 3.3. (CPS translation) The format of CS is similar to a meta-language for expressing
formal systems in computer science and logic. Here we consider the following CS S for a call-by-
value CPS translation (Danvy and Rose, 1998).

Assume the metavariables Z = {V(0), E(1), (E0)(0), (E1)(0)} and the signature� consisting of the
function symbols

λ : 〈1〉, λ : 〈1〉, (− −) : 〈0, 0〉, (− −) : 〈0, 0〉 CPS : 〈0〉, ([−]) : 〈0〉.
There are two kinds of λ-terms, ordinary (consisting of λ and (− −)) and over-lined ones (con-
sisting of λ and (− −)), and the CPS translates ordinary λ-terms to over-lined λ-terms using
the auxiliary translation ([−]). We write the CS S of CPS translation in two ways: the left column
is written in the usual named notation, and the right column is written in de Bruijn level notation,
which is the format we use in this paper. Here we omit metavariable and variable contexts in the
rules.

CPS(E0) ⇒ λk.([E0]) (λm.km) CPS(E0) ⇒ λ1.([E0]) (λ2.12)
([V]) ⇒ λk.k V ([V]) ⇒ λ1.1 V
([λx.E[x]]) ⇒ λk.k (λx.λk.([E[x]]) (λm.km)) ([λ1.E[1]]) ⇒ λ1.1 (λ2.λ3.([E[2]]) (λ4.34))
([E0E1])⇒ λk.([E0]) (λm.([E1]) (λn.mn(λa.k a))) ([E0E1])⇒ λ1.([E0]) (λ2.([E1]) (λ3.23(λ4.1 4)))

A point is that de Bruijn level version is obtained by just renaming variable names with numbers
according to their de Bruijn levels. Notice that this differs from the more well-known method of
de Bruijn indices. Meta-terms in de Bruijn levels can be regarded as ‘normal forms’ of α-equivalent
meta-terms (e.g. λk.k V =α λ1.1 V).

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

10 M. Hamana

One of the important properties of rewriting systems is termination, which is also called strong
normalisation, meaning that any computation path is finite.

Definition 3.4. We call a CS (�, C, Z) terminating if the rewrite relation →C on all terms is
well-founded.

We will give a complete algebraic characterisation of terminating CSs in Section 5.

4. Algebraic Semantics of Meta-terms
In this section, we give a semantics of the syntax of CSs.We consider second-order abstract syntax
in the framework of algebras in the presheaf category SetF reviewed in Section 2. Terms andmeta-
terms have algebraic properties of initial and free �-monoids, respectively, which are suitable to
use them as the syntax of CSs.

4.1 Algebra of meta-terms
We define the functor δ : SetF → SetF for context extension by

(δA)(n)=A(n+ 1), (δA)(ρ)=A(ρ + id1)

for A ∈ SetF, n ∈ F, ρ :m→ n in F, and a presheaf V ∈ SetF called the presheaf of variables by

V(n)= {1, . . . , n}; V(ρ)= ρ.

The meaning of this definition is that each component V(n)= {1, . . . , n} gives the set of (de
Bruijn) variables from 1 to n, and V(ρ) gives a renaming between them.

Definition 4.1. To a signature�, we associate the signature functor � : SetF → SetF given by

�A def=
∐

f :〈n1,...,nl〉∈�

∏
1≤i≤l

δniA.

A �-algebra is an algebra of the functor �. Namely, a �-algebra is a pair (A, α) consisting of
a presheaf A ∈ SetF, called a carrier, and a map α = [f A]f∈� :�A � A called the algebra
structure, where f A is a map of SetF

f A : δn1A×. . .×δnlA � A

called an operation, defined for each function symbol f : 〈n1, . . . , nl〉 ∈�, where [] denotes the
copair of coproducts.

Remark 4.2. For each n ∈ F, the component of an operation f A at n is a function

f An :A(n+ n1)×· · ·×A(n+ nl) � A(n)

Definition 4.3. A (V+�)-algebra (A, [ν, α]) is an algebra of the functor (V+�) : SetF → SetF.
Namely, it consists of a�-algebra (A, α) and a map of SetF

ν :V→A.

called a unit.

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

Mathematical Structures in Computer Science 11

Example 4.4. For the signature �λ of the λ-calculus given in Example 3.2, the presheaf 	 of all
λ-terms is defined by

	(n)= {t | � n � t}
and for ρ :m→ n in F, 	(ρ) :	(m)→	(n) is a renaming of λ-term by ρ, where each free
variable i ∈ {1, . . . ,m} is replaced with ρ(i). It forms a (V+�λ)-algebra by giving the operations

ν	 :V → 	 @	 :	×	 → 	 λ	 : δ	 → 	

νn(x) = x, @	n (s, t) = s@t, λ	n (t) = λ(n+ 1.t).

These operations correspond to the constructors of variables, applications and abstractions.

Definition 4.5. A �-monoid (A, α, ν,μ) is a �-algebra (A, α) equipped with a unit ν :V→A
and a family of functions, called amultiplication,

μ(n)
m :A(n)×A(m)n � A(m)

which is natural inm ∈ F and extra-natural in n ∈ F, and satisfies the following axioms:

(i) μ(n)
m (νn(i);

−→
b) = bi (1≤ i≤ n)

(ii) μ(m)
m (a;νm(1), . . . , νm(m)) = a

(iii) μ(n)
m (a;μ(l)

m (b1,−→c), . . . ,μ(l)
m (bl,−→c)) = μ

(l)
m (μ(n)

l (a;
−→
b);−→c)

(iv) μ(n)
m (f An (a1, . . . , al);

−→
b)= f Am (μ

(n+k1)
m+k1 (a1; upm+k1

m (
−→
b), (νm+k1 (m+ i))i=1,...,k1), . . . ,

μ
(n+kl)
m+kl

(al; up
m+kl
m (

−→
b), (νm+kl(m+ i))i=1,...,kl))

where f : 〈k1, . . . , kl〉 ∈�,
−→
b = b1, . . . , bn and upnm

def= A(upnm), where m≤ n and a map upnm :
m→ n in F is an injection defined by j �→ j. Here, an element in the product A(n)×A(m)n is
denoted by (a; b1, . . . , bn), or simply (a;

−→
b).

A�-monoid models term and substitution structures.

Remark 4.6. The above definition is almost the same as the definition of abstract clone (Taylor,
1993). The naturality condition of μ expresses that μ is parameterised with respect to renaming
parametersm and n. The statement ‘μ(n)

m is extra-natural in n’ means that for any ρ : n→ n′ in F,
the diagram

A(n)×A(m)n

�������
A(id)×A(m)ρ

� 							

μ
(n)
m

A(n)×A(m)n

′
A(m)

							A(ρ)×A(m)id
 �������

μ
(n′)
m

�

A(n′)×A(m)n
′

commutes.

Another way to define�-monoid using a monoidal structure on SetF is given as follows, which
is the original definition (Fiore et al., 1999) of�-monoid.

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

12 M. Hamana

Definition 4.7. (SetF, •, V) forms a monoidal category (Mac Lane, 1971), where the ‘substitution’
monoidal product • is defined as follows. For presheaves A and B,

(A • B)(n) def=
(∐
m∈N

A(m)×B(n)m
)
/∼

where ∼ is the equivalence relation generated by (t; uρ1, . . . , uρm)∼ (A(ρ)(t); u1, . . . , ul) for ρ :
m→ l ∈ F.

Let � be a signature functor. It has a canonical strength st :�(A) •A→�(A •A) (Tanaka
and Power, 2006, Theorem 6.3) (Fiore, 2008, Corollary 7). A�-monoid A= (A, α, ν, μ) consists
of a monoid object (A, ν :V→A,μ :A •A→A) in the monoidal category (SetF, •, V) with a
�-algebra α :�A→A such that the following commutes:

�(A) •A st� �(A •A) �μ � �A

A •A
α •A

�

μ
� A

α
�

Remark 4.8. The axioms (i)–(iii) in Definition 4.5 correspond to the monoid laws (two side unit
laws and the associativity law), and the axiom (iv) is called the�-monoid law stating that μ com-
mutes with each function symbol, which corresponds to the diagram in Definition 4.7. The axiom
(iv) is a necessary property of substitution on a term-like structure with variable binding.

In Definition 4.5, a unit ν :V→A can be understood as an (interpretation) map of object vari-
ables, which embeds object variables to A. A multiplication μ can be understood as a map of
(interpreted) substitution operation in A. Then, the axioms have the following intuitive reading.

(i) This axiom means replacing a variable i with the i-th element bi in
−→
b .

(ii) This axiom says that substituting the (interpretation of) variables ν(1), . . . , ν(n) in A for
variables 1, . . . , n does not affect the element.

(iii) This axiom is the associativity of substitutions, that is, a version of substitution lemma.
(iv) This �-monoid axiom says that the (interpretation of) substitution μ is pushed into the

(interpretation of) term structure.

The two ways of defining �-monoids are equivalent. In a termination proof of CS, we often
need to give a concrete example of �-monoids. For it, Definition 4.5 of �-monoids is more con-
venient than the original Definition 4.7. In theory, Definition 4.7 is more convenient. For instance,
we will use it to construct a free �-monoid in Theorem 4.13. Hereafter, we use both descriptions
of�-monoids.

Definition 4.9. A homomorphism h between �-algebras (A, [f A]f∈�) to (B, [f B]f∈�) is a map
h :A � B of SetF such that

�A
[f A]f∈� � A

�B

�h
�

[f B]f∈�
� B

h
�

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

Mathematical Structures in Computer Science 13

Concretely,

hn(f An (a1, . . . , al))= f Bn (hn+i1 (a1), . . . , hn+il(al))
for all f : 〈i1, . . . , il〉 ∈�, n ∈N, a1, . . . , al ∈A(n). This defines the category�-alg of�-algebras.

Amorphism of�-monoids h : (A, νA,μA) � (B, νB,μB) is a�-algebra homomorphism that
is also a monoid morphism, that is, it satisfies the condition of homomorphism and the following

hn(νAn (i))= νBn(i)

hn(μA(m)
n (a;

−→
b))=μB (m)

n (hm(a); hn(b1), . . . , hn(bm)).
This defines the category�-Mon of�-monoids.

Example 4.10. Using the signature �λ in Example 4.4, the presheaf 	 of λ-terms forms a �λ-
monoid (, ν,μ) as follows. Since	 is a (V+�λ)-algebra, it has the unit ν (given in Example 4.4).
The multiplication μ is defined by

μn(i;
−→t) = ti (i ∈ n)

μn(s1@s2;
−→t) = μn(s1;

−→t) @μn(s2;
−→t)

μn(λ(n+ 1. s);−→t) = λ(n+ 1.μn+1(s;
−→t , n+ 1)).

This μ is a substitution of a λ-term. In the ordinary notation,
μn(t,−→s)= t[1 := s1, . . . , n := sn],

where 1, . . . , n are variables in de Bruijn level notation. The axioms of �-monoid are satisfied,
because μ is the substitution operation. This is an instructive concrete example to understand the
meaning of axioms. In this case, the presheaf	 is given syntactically, and all operations on	 and
μ are also given syntactically, that is, the constructors of λ-terms and the substitution operation.

The presheaf T�V ∈ SetF of all terms is defined by
T�V(n)= {t | � n � t}

T�V(ρ)(i)= ρ(i) (1≤ i≤m)
T�V(ρ)(f (m+−→i1 .t1, . . . ,m+−→il .tl))= f (m+−→i1 .T�V(ρ + idi1)(t1), . . . ,m+−→il .T�V(ρ + idil)(tl))
for f : 〈i1, . . . , il〉 ∈�, ρ :m→ n in F, which gives renaming of variables in a term.

Theorem 4.11. The presheaf T�V of terms forms an initial (V+�)-algebra, i.e. an initial object
in the category (V+�)-alg.

Proof. An initial (V+�)-algebra is constructed by the colimit of the ω-chain 0→ (V+�) 0→
(V+�)20→ · · · (Adamek, 1974). These construction steps correspond to derivations of terms
by term forming rules; hence, their union T�V gives the object part of the colimit. The arrow part
of the colimit is associated with substitution. The associated algebra structure is given as follows:
the map ν : V � T�V is given by

νn : V(n) � T�V(n),
i � i.

For every f ∈� with biding arity 〈i1, . . . , il〉, the map f T�V : δi1T�V×· · ·×δilT�V � T�V in
SetF is given by

(t1, . . . , tl) � f (n+−→i1 .t1, . . . , n+−→il .tl).

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

14 M. Hamana

In Fiore et al. (1999, Theorem 2.1), the ‘syntactic algebra’ is constructed as an initial (V+�)-
algebra, which is nothing but this (V+�)-algebra (T�V, [ν, [f T�]f∈�]).

Proposition 4.12. There is an adjunction

SetN
(−)

�
⊥� | − |

SetF

where the functor | − | = − ◦ J using the inclusion J :N→ F gives the underlying indexed set of
a presheaf. Its left adjoint (−) is the left Kan extension along J, calculated (Hamana, 2004) as
Z(n)=∐

k∈N F(k, n)×Z(k) for Z ∈ SetN.

Therefore, we have a way to construct a presheaf Z ∈ SetF from a given N-indexed set Z of
metavariables. Using the adjointness, a map φ : Z → |A| in SetN for A ∈ SetF induces a map
φ̂ : Z →A in SetF. We also regarded this as a way to construct a map of presheaves from an
assignment φ for metavariables in Section 4.2.

Let Z be an arbitraryN-indexed set of metavariables. Given a signature�, the presheafM�Z of
meta-terms over Z is defined by

M�Z(n)= {t | Z � n � t}
and for ρ :m→ n in F defined by

M�Z(ρ)(i)= ρ(i)
M�Z(ρ)(f (n+−→i1 .t1, . . . , n+−→il .tl))= f (n+−→i1 .M�Z(ρ)(t1), . . . , n+−→il .M�Z(ρ)(tl))

M�Z(ρ)(M[t1, . . . , tl])=M[M�Z(ρ)(t1), . . . , M�Z(ρ)(tl)].

Theorem 4.13. The presheaf M�Z of meta-terms forms a free�-monoid over Z.

Proof. Due to Hamana (2004). For Z ∈ SetN, a free �-monoid (M�Z, [fM�]f∈� , ν,μ) over Z is
constructed as an initial (V+� + Z • −)-algebra (M�Z, ν, [fM�]f∈� , σ). For every f ∈� with
binding arity 〈i1, . . . , il〉, the map fM�Z : δi1M�Z×· · ·×δilM�Z � M�Z in SetF is given by

(t1, . . . , tl) � f (n+−→i1 .t1, . . . , n+−→il .tl).
The unit ν is given by νn : i �→ i. The map σ : Z •M�Z � M�Z is given by

((ξ ,M); t1, . . . , tm) � M[tξ (1), . . . , tξ (m)]

The map ηZ : Z � M�Z is given by

ηZ,m : (ξ , Z) �→ Z[ξ (1), . . . , ξ (m)].

The multiplication μ is given as the substitution for variables, which makes the diagram

Z •M�Z
ηZ • id

� M�Z •M�Z
�
�
�
�
�
�

σ
�

M�Z

μ

�

commute.

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

Mathematical Structures in Computer Science 15

Corollary 4.14. The presheaf T�V forms an initial�-monoid, i.e. an initial object in the category
�-Mon.

Proof. Taking Z = 0 as the empty presheaf, we have T�V=M�0.

4.2 Algebraic characterisation of substitution for metavariables
We have shown that the meta-terms form a free �-monoid. Formally, given Z ∈ SetN, M�Z is a
free�-monoid over Z ∈ SetF. Namely, for an arbitrary�-monoid (A, α, νA,μA) and φ : Z → |A|,
there exists a unique�-monoid morphism φ� that makes the diagram

Z
ηZ� M�Z
�
�φ̂�

A

φ�

�

commute.
We have seen that an N-indexed function φ : Z → |A| induces a map φ̂ : Z →A of SetF. It is

also extended to a�-monoid morphism φ� :M�Z →A defined by

φ�n(i)= νAn (i)

φ�n(f (n+ −→i1 .t1, . . . , n+ −→il .tl))= f An (φ
�
n+i1 (t1), . . . , φ

�
n+il(tl))

φ�n(M[−→t])=μA
n (φm(M); φ�n(t1), . . . , φ

�
n(tm)) forM ∈ Z(m).

(4)

This definition gives the meaning of a meta-term in a �-monoid A by structural recursion. Note
that it is not the standard structural recursion because the indices of φ vary in the recursive calls.
The meaning of a variable is obtained using νA, which is the interpretation of variable former, a
function symbol f is interpreted as f A and a meta-application is interpreted as follows. Firstly, the
value of a metavariable M is obtained using the map φ, and secondly, μA replaces semantically
freem variables 1, . . . ,m with the meanings of t1, . . . , tm obtained by applying φ�.

The extension captures the notion of syntactic substitutions for metavariables, where a map φ
is regarded as an assignment of values for metavariables. We formulate substitutions along this
idea.

Definition 4.15. Let Z be an N-indexed set of metavariables, A ∈ SetF. An assignment θ
denoted by

θ : Z →A,

is an N-indexed function θ : Z → |A|. We may denote an assignment θ by the notation

θ = [M1 �→ a1, . . . ,Mm �→ am]

which assigns ai toMi for i= 1, . . . ,m.

Lemma 4.16. Let k ∈N. If (A, [νA, [f A]f∈�]) is a (V+�)-algebra, so is (δkA, [νδk , [f δk]f∈�]),

where νδ
kA
n

def= νAn+k, f
δkA
n

def= f An+k. Moreover, if (A, [f A]f∈� , νA,μA) is a �-monoid, so is
(A, [f δkA]f∈� , νδ

kA,μδkA), where

μδ
kA
n : δkA(m)×δkA(n)m → δkA(n)

a ; b1, . . . , bm �→μA
n+k(a ; b1, . . . , bm, ν

A
n+k(n+ 1), . . . , νAn+k(n+ k)).

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

16 M. Hamana

We now consider the case of assignment θ : Z � δkT�V. It assigns a term to each
metavariable of arity n as

Z(n) � M θn� t ∈ T�V(n+ k)

where k is the number of additional possible free variables other than 1, . . . , n in the results.
Additional free variables generated by an assignment θ are never captured by any binder. For

example, let M be a 0-ary metavariable, and θ : Z → δT�V; θ0 :M �→ c(1). The free variable 1 in
c(1) is never captured by applying the substitution θ , which is automatically shifted to make it free
to follow the method of de Bruijn levels, for example,

θ
�
0(λ(1.M))= λ(1.θ�1(M))= λ(1.μδT�V1 (θ0(M);))= λ(1.μT�V

2 (θ0(M); νT�V2 (2)))

= λ(1.μT�V
2 (c(1); 2))= λ(1.c(2)).

In the named notation, it corresponds to the phenomenon of avoiding variable capture of bound
variables. Applying the substitution θ :M �→ c(x) to λ(x.M), we need to rename the binder
variable x to x′ as θ�(λ(x.M))= λ(x′.c(x)).

5. Algebraic Semantics of Rewriting
In this section, we interpret CSs by �-algebras equipped with binary relations modelling one-
step rewriting. We give a complete characterisation of CSs with respect to the algebraic semantics.
The basic idea is to follow the algebraic semantics of first-order TRSs by monotone�-algebras. A
fundamental characterisation of terminating TRSs has been established.

Theorem 5.1. (Huet and Lankford, 1978; Zantema, 1994) A TRS is terminating if and only if
there exists a non-empty well-founded monotone algebra that satisfies all rules of the TRS.

This proposition uses the ordinary first-order universal algebra, but the framework of the ordi-
nary first-order universal algebra is insufficient for modelling CSs. We consider second-order
computation in the framework of algebras in the presheaf category SetF equipped with binary
relations.

5.1 Semantics
Definition 5.2. We say that a presheaf A ∈ SetF is equipped with a binary relation>A when
(i) >A is a family {>A(n)}n∈N of binary relations>A(n) on A(n), and
(ii) for all a, b ∈A(m) and ρ :m→ n in F, if a>A(m) b, then A(ρ)(a)>A(n) A(ρ)(b).

It will be denoted by (A,>A).
The condition (ii) means that each binary relation is compatible with a presheaf action.
We use the following notion of monotonicity. For a binary relation >, we write a≥ b if a> b

or a= b,

Definition 5.3. Let (A1,>A1), . . . , (Am,>Am), (B,>B) be presheaves equipped with binary
relations. A morphism f :A1×· · ·×Am � B in SetF ismonotone if

for all n ∈ F, for all a1, b1 ∈A1(n), . . . , am, bm ∈Am(n),
if there exists a single k ∈ {1, . . . ,m} such that (ak >A(n) bk and for all j �= k, aj = bj),
then fn(a1, . . . , am)>B(n) fn(b1, . . . , bm).

We interpret rewrite rules in a (V+�)-algebra.

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

Mathematical Structures in Computer Science 17

Figure 3. Interpretation of a rule.

Definition 5.4. LetA be a (V+�)-algebra. Given an assignment θ : Z → δnT�V, a term-generated
assignment θ̃ : Z → δnA is given by the composite map in SetF

Z θ� δnT�V
δn!A� δnA

where !A is the unique (V+�)-algebra homomorphism from the initial (V+�)-algebra T�V to A.
Throughout the paper, we denote by !A the unique (V+�)-homomorphism.

This definition means that the interpretation of a metavariableM by a term-generated assign-
ment φ is performed by firstly θ assigning some term t to M and then interpreting the term in
a (V+�)-algebra A. In other words, a term-generated assignment assigns a ‘term-generated’ ele-
ment of A. This is because the (object) rewrite relation is defined on terms (not on meta-terms).
To interpret a rewrite rule, unrestricted assignments Z →A are not suitable to model rewriting.

Definition 5.5. A monotone (V+�)-algebra (A,>A) is a (V+�)-algebra A= (A, [ν, [f A]f∈�]),
equipped with a binary relation >A on A such that every operation f A is monotone. Moreover,
when for every n ∈N,>A(n) is a well-founded relation, A is called well-founded.

Definition 5.6. Let C be a CS. A monotone (V+�)-algebra (A,>A) satisfies a rewrite rule Z �
0 �
⇒ r if for all term-generated assignments θ̃ : Z → δnA,

θ̃
�
0(
) >A(n) θ̃

�
0(r) (5)

holds. Namely, for all assignments θ : Z → δnT�V,

!An θ�0(
) >A(n) !An θ�0(r) (6)
holds (see Figure 3).

Definition 5.7. A (V+�, C, Z)-algebra A is a monotone (V+�)-algebra (A,>A) that satisfies all
rules of a CS (�, C, Z) (cf. Figure 3).

For n ∈N, we define a relation →C(n)
def= {(s, t) | n � s→C t}.

Proposition 5.8. The presheaf T�V of terms is equipped with the binary relation {→C(n)}n∈N.

Proof. For a map ρ : n→ n′ in F, let ρ(t) denote a term by renaming each free variable using ρ.
We show the compatibility: if we have a rewrite step � n � s→C t, then we have also � n′ �
ρ(s)→C ρ(t) for any ρ : n→ n′ in F. The derivation tree of the rewrite � n � s→C t begins with

� 0 �
⇒ r
� n � θ�(l)→C θ�(r)

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

18 M. Hamana

The derivation tree of � n′ � ρ(s)→C ρ(t) begins with the inference
� 0 �
⇒ r

� n′ � θ ′�(l)→C θ ′�(r)
where θ ′ :M �→ ρ(θ(M)). Mimicking the derivation tree of the rewrite � n � s→C t for this,
finally we obtain � n′ � ρ(s)→C ρ(t).

Proposition 5.9. For any (V+�, C)-algebra A,
� n � s→C t ⇒ !An (s) >A(n) !An (t).

Proof. By induction on the proof of s→C t.
• Case (Rule). Suppose that

θ
�
0(
)→C θ

�
0(r)

is derived from a rule (Z � 0 �
⇒ r) ∈ C with θ : Z → δnT�V. Since A is a (V+�, C)-
algebra,

!An θ�0(
) >A(n) !An θ�0(r).
• Case (Fun). Suppose that

� n � f (. . . , n+1 · · · n+ij.tj, . . .)⇒C f (. . . , n+1 · · · n+ij.t′j , . . .)

is derived from

f : 〈i1, . . . , im〉 ∈� � n+ ij � tj ⇒C t′j (some single j s.t. 1≤ j≤m)

By I.H.,

θ
�
n+ij tj >A(n+ij) θ

�
n+ij t

′
j

Since f A is monotone,

θ� f (. . . , n+1 · · · n+ij.tj, . . .)= f A(. . . , θ� tj, . . .) >A(n) f A(. . . , θ� t′j , . . .)

= θ�f (. . . , n+1 · · · n+ij.t′j , . . .)

We obtain a complete characterisation of terminating CSs.

Theorem 5.10. A CS C is terminating if and only if there is a well-founded (V+�, C, Z)-algebra.

Proof. (⇐): Let A be a well-founded (V+�, C, Z)-algebra. Assume that C is non-terminating, that
is, there exists an infinite reduction sequence

n � t1 →C t2 →C · · · .
By Proposition 5.9, we have

!A(n)(t1) >A(n) !A(n)(t2) >A(n) · · · .
This contradicts well-foundedness of>A.
(⇒): When a CS C is terminating, the (V+�, C, Z)-algebra (T�V,→C) is a desired well-founded
algebra, because the binary relation →C is well-founded.

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

Mathematical Structures in Computer Science 19

5.2 Benefit of completeness
In summary, we have a complete algebraic characterisation of rewriting of CSs as an extension of
the first-order case (Huet and Lankford, 1978; Zantema, 1994).

Note that a knownmodel of higher-order rules, the functional interpretation (van de Pol, 1996),
is incomplete as the following example shows.

Example 5.11. (Incompleteness of functional interpretation (van de Pol, 1996)) Suppose a
signature � = {c : 〈0〉}. Consider a CS (�, C, {F(1), X(1), Y(0)}) consisting of the following rule
only:

F(1), X(1), Y(0) � 0 � c(F[F[X[Y]]])⇒ F[X[Y]].
We try to prove termination of C. This CS is terminating because with any rewrite step the number
of c-symbols decreases. Nevertheless the existing interpretation method of higher-order rewriting
based on the model of hereditary monotone functionals cannot show termination of C due to the
incompleteness of the model (van de Pol, 1994, 1996).

In contrast to it, we can show the termination of C by using our algebraic semantics as follows.
Now we take the monotone (V+�)-algebra (T�V,�T�V) where
• s�T�V(n) t if the number of c-symbols in s and t decreases.
Notice that now any term in T�V(n) consists of c and variables 1, . . . , n. Hence, any assignment
into δnT�V is of the form F �→ ck(x), X �→ cm(x), Y �→ cl(x) (k,m, l-times c’s). This gives a well-
founded (V+�, C, Z)-algebra (T�V,�T�V), which implies the termination of C by Theorem 5.10.

Theorem 5.10 gives a complete method to prove termination of a CS by finding a suitable
(V+�)-algebra A and checking the satisfiability of rules in C. But this method is impracti-
cal. The notion of (V+�, C, Z)-algebra uses the satisfiability by examining all term-generated
assignments, which imposes that assignments must assign terms (not just elements in a model
A) to metavariables. Namely, one need to consider all closed (w.r.t. metavariables) instances of
left- and right-hand sides of the rule (see (6)). Since a (V+�)-algebra A does not equip with a
multiplication, one does not know a way to interpret meta-applications using only A.

In the next section, we improve this situation. We give a method that entails termination.

6. Algebraic Semantics of Meta-Rewriting: Monotone�-monoids
We have formulated the rewrite steps of a CS as a binary relation on terms. In this section, we
define rewriting on meta-terms, which we call meta-rewriting. Let (�, C, Z) be a CS. We define
the meta-rewriting relation ⇒C by the inference rules defined in Figure 4. Therefore, we consider
the following notion ofmeta-termination.

Definition 6.1. We call a CS (�, C, Z) meta-terminating if the rewrite relation ⇒C is well-
founded.

In this section, we give algebraic semantics of meta-rewriting. We follow basically the line
of semantics given in Section 5, but we use �-monoids instead of �-algebras for the semantic
structure.

6.1 Semantics
Definition 6.2. Amonotone�-monoid (A,>A) is a�-monoid (A, νA,μA), where A is equipped
with a binary relation >A, such that every operation for � is monotone. Moreover, if >A(n) is a
well-founded relation for each n ∈N, A is called well-founded.

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

20 M. Hamana

Figure 4. Meta-rewriting (one-step).

Monotonicity of an operation corresponds to the (Fun) rule in Figure 4. Notice that the unit
νA and the multiplication μA need not be monotone. The reasons are
• On the unit νA: there is no variable rewrite such as x ⇒ y.
• On the multiplication μA: (Meta) does not simply correspond to the monotonicity of μA.

Rather, it should be modelled by admissible assignments, which we will give in Definition 6.4.

Definition 6.3. Let (�, C, Z) be a CS. A monotone �-monoid (A,>A) satisfies a rewrite rule
Z � 0 �
⇒ r ∈ C if

φ
�
0(
)>A(n) φ

�
0(r)

for all assignments φ : Z → δnA.

Definition 6.4. Let (A, ν,μ) be a monotone�-monoid, and φ : Z →A an assignment. Define the
map σ : Z •A � A by the composite

Z •A φ•idA� A •A μ� A

The assignment φ is called admissible if σ is monotone.

The condition ‘σ is monotone’ means that each σ (m)
n : Z(m)×A(n)m � A(n) is monotone,

that is,

for allm ∈ F, for all (ξ ,M) ∈ Z(m) with ξ :m′ →m,
for all n ∈ F, for all a1, b1 ∈A1(n), . . . , am, bm ∈Am(n),
if there exists a single k ∈ {1, . . . ,m} such that (ak >A(n) bk and for all j �= k, aj = bj),
then μA

n (A(ξ)(φm′(M)); a1, . . . , am)>A(n) μ
A
n (A(ξ)(φm′(M)); b1, . . . , bm).

The notion of admissible assignments is a necessary ingredient of interpretation of meta-
rewriting. Arbitrary assignments are not suitable to interpret meta-rewriting. An arbitrary
assignment may not preserve the rewrite relation as the following example shows.

Example 6.5. Suppose the constants� = {a, b, c : 〈〉}, the metavariable set Z = {M(1)} and the CS
C = { � 0 � a⇒ b}.

Then we have a meta-rewritingM[a]⇒C M[b]. We interpret this rewrite step in a monotone �-
monoid (M�Z, [aM� , bM� , cM�], ν,μ),⇒C) (cf. Theorem 4.13). It satisfies the rule a⇒C b. Take

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

Mathematical Structures in Computer Science 21

an assignment φ :M � c. Then, the interpretation using φ does not preserve the relation:

φ�(M[a])= c �⇒C c= φ�(M[b]). (7)

We need a ‘monotonic’ interpretation of meta-rewriting to establish an algebraic termination
proof method. The idea of admissible assignments is motivated by prohibiting this kind of
‘non-monotonic’ interpretation of a rewrite step.

This problem has already been recognised by van de Pol (1994, Example 5), (1996, Section 4.3).
The notion of admissible assignments is analogous to his notion of strict valuations.

Definition 6.6. A (�, C, Z)-monoid is a monotone�-monoid (A,>A) such that
(i) A satisfies all rules of a CS (�, C, Z), and
(ii) there is an admissible assignment Z � A.

Lemma 6.7. If (A,>A) is a (�, C, Z)-monoid, so is (δnA,>δnA).

Proof. Let (A,>A) be a (�, C, Z)-monoid having an admissible assignment φ : Z →A. Then
(δnA,>δnA) is also a monotone �-monoid, where a>δnA(k) b

def⇐⇒ a>A(n+k) b. Let
⇒ r ∈ C.
Since A satisfies the rule, for all ψ : Z � δnA,

ψ
�
0(
)>A(n) ψ

�
0(r)

holds. Therefore, δnA satisfies the rule. There is an admissible assignment defined by

Z φ� A ι� δnA
where ιk =A(upk+n

k) :A(k)→A(k+ n). Hence (δnA,>δnA) is a (�, C, Z)-monoid.

We will clarify a sufficient condition ensuring the existence of an admissible assignment in
Section 8. A (�, C, Z)-monoid is a model for meta-rewriting as a Definition 5.6 for rewriting. For

n ∈N, we define a N-indexed relation ⇒C(n)
def= {(s, t) | Z � n � s⇒C t}. An important example

of (�, C, Z)-monoids is as follows.

Proposition 6.8. (M�Z,⇒C) is a (�, C, Z)-monoid.

Proof. By Theorem 4.13, M�Z is a �-monoid, and so is M�Z. Because of the (Fun)-rule, every
operation fM�Z is monotone. We check the conditions of Definition 6.6.

(i) By (Rule), for every rule
⇒ r in C and assignment θ : Z → δnM�Z, we have θ�0(
)⇒C θ
�
0(r).

Hence M�Z satisfies all rules in C.
(ii) There is an admissible assignment θ : Z � M�Z defined by M �→M[1, . . . , n] for each

M ∈ Z(n).

Lemma 6.9. Let φ : Z →A be a map of SetF and ψ :A→ B a �-monoid morphism. We have
(ψ ◦ φ)� =ψ ◦ φ�.

Proof. By freeness of M�Z, the unique �-monoid morphism that extends φ followed by a
�-monoid morphism is represented by the unique�-monoid morphism that extends ψ ◦ φ.

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

22 M. Hamana

Proposition 6.10. Let (�, C, Z) be a CS and (A,>A) a (�, C, Z)-monoid. For any admissible
assignment φ : Z →A,

Z � n � s⇒C t ⇒ φ�n(s)>A(n) φ
�
n(t)

Proof. By induction on the proof of s⇒C t.
• Case (Rule). Suppose that

Z � n � θ
�
0(
)⇒C θ

�
0(r)

is derived from a rule (Z � 0 �
⇒ r) ∈ C with θ : Z → δnM�Z. Let φ : Z →A be an
admissible assignment. Take an assignment ψ as

ψ = Z θ� δnM�Z
δnφ�� δnA

By Lemma 6.9, ψ� = (δnφ)� ◦ θ�. By Lemma 6.7, since A is a (�, C, Z)-monoid, so is δnA.
Therefore,

φ�nθ
�
0(
)=ψ

�
0(
) >A(n) ψ

�
0(r)= φ�nθ

�(r)
• Case (Fun). Similarity to the case (Fun) in the proof of Proposition 5.9.
• Case (Meta) Suppose that Z � n � M[t1, . . . , tl] ⇒C M[t′1, . . . , t′l] is derived from

Z � n � tj ⇒C t′j for some single j, and ti = t′i for all i �= j (1≤ i, j≤ l)

By I.H., φ�(tj)>A(n) φ
�(t′j). Since φ is admissible,

φ�n(M[. . . , tj, . . .])=μA
n (φl(M); . . . , φ�n(tj), . . .)>A(n) μ

A
n (φl(M); . . . , φ�n(t

′
j), . . .)

= φ�n(M[. . . , t′j , . . .])

Theorem 6.11. ACS (�, C, Z) is meta-terminating if and only if there is a well-founded (�, C, Z)-
monoid.

Proof. (⇐): Let A be a well-founded (�, C, Z)-monoid. Assume that C is not meta-terminating,
that is, there exists an infinite meta-rewriting sequence

Z � n � t1 ⇒C t2 ⇒C t3 ⇒C · · · .
By Proposition 6.10, for any admissible assignment φ : Z →A,

φ�n(t1)>A(n) φ
�
n(t2)>A(n) φ

�
n(t3)>A(n) · · · .

This contradicts well-foundedness of>A.
(⇒): When a CS C is meta-terminating, the (�, C, Z)-monoid (M�Z,⇒C) by Proposition 6.8 is
a desired well-founded one because the relation ⇒C is well-founded.

Remark 6.12. Notice again that the notion of admissible assignments is only used to interpret
a meta-rewrite sequence in a �-monoid A in the above proof of the soundness. We can allow
non-admissible assignments in meta-rewriting steps. For example, in the case of the CS C of the
untyped λ-calculus, we have

θ = [M �→ c, N �→ a]
M(1),N(0) � 0 � λ(x.M)@N ⇒M[N] ∈ C

λ(x.c)@a⇒C c
(Rule)

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

Mathematical Structures in Computer Science 23

where θ is not admissible. Nevertheless, it is a correct meta-rewriting step and a valid reduction
in the λ-calculus.

Theorem 6.11 also serves as a method to prove termination of a CS. In practice, applying
Theorem 6.11 to a termination problem is easier than applying Theorem 5.10. Theorem 5.10
requires to check the interpretations of all instances of rules by term-generated assignments.
Considering all instances means that we need to use induction or case analysis on terms, which is
tedious.

On the other hand, Theorem 6.11 uses merely all admissible assignments into a�-monoid for
interpretation, which is simpler to consider.

7. Hereditary Monotone Functionals as a�-monoid
By Theorem 6.11, we can show the meta-termination of a given CS C by finding a well-founded
monotone (�, C, Z)-monoid. It can be regarded as a second-order extension of Theorem 5.1 for
the termination of first-order TRSs.

How to find such a well-founded (�, C, Z)-monoid for termination is an important problem in
practice. The first issue is to find an example of �-monoid. Trying to define a�-algebra structure
is usually not problematic, but finding a suitable compatible multiplication μ on it is generally
hard. Fortunately, there is a guideline. There are two typical classes of�-monoids:
(i) A �-monoid of a syntactic term structure, where the syntactic substitution as the multipli-

cation.
(ii) A �-monoid of (suitably restricted) function spaces, where the composition of functions as

the multiplication.
As an example in the class (i), we have considered the �-monoid T�V of terms, and the �-

monoid M�Z of meta-terms. In this class of �-monoids, the multiplication is compatible with
the algebra structure (i.e. satisfying the �-monoid law), because the syntactic substitution is
recursively defined on the term structure.

An example in the class (ii) is the structure called clone (short for closed sets of operations
(Cohn, 1965)) known in universal algebra. A clone is a family of functions with all projections
closed under composition. Therefore, the composition can be used as the multiplication of a �-
monoid of clone.

For the above-mentioned class (ii) of clones, to define a suitable order structure on a clone,
we need to analyse function spaces. Following Gandy’s early work on functional interpretation
of strong normalisation of typed λ-calculus (Gandy, 1980), (van de Pol, 1994, 1996) has defined
the order structure on function spaces called hereditary monotone functionals for termination of
higher-order rewrite systems in the format of Mayr and Nipkow (1998). In this section, using
hereditary monotone functionals, we show that we can construct a monotone�-monoid.

7.1 Hereditary monotone functionals
Given a set B of base types, we define the set T of simple types as the least set satisfying

T= B∪ {σ → τ | σ , τ ∈T} ∪ {σ×τ | σ , τ ∈T}
Below we define a set Dτ for each τ ∈T by the set of all hereditary monotone functionals, with the
monotone order mon> and the strictly monotone order str>, parameterised by types (van de Pol,
1994).

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

24 M. Hamana

Definition 7.1. ((van de Pol, 1994) [Definition 11]) Let (A,>A) be a non-empty set A with a
strict partial order >A on it. A T-indexed set of hereditary monotone functionals with families of
(strict) partial orders

(D, {mon>τ }τ∈T, {mon≥τ }τ∈T)
is defined by

(i) Dι =A, with mon>ι
def=>A, and mon≥ι

def= mon>ι ∪ id for base types ι.
(ii) Dσ×τ =Dσ×Dτ , and (x1, x2) mon>σ×τ (y1, y2)

def⇐⇒ (x1 = y1 and x2 mon>τ y2) or (x1 mon>σ y1 and x2 mon≥τ y2),
(x1, x2) mon≥σ×τ (y1, y2)

def⇐⇒ (x1 mon≥σ y1 and x2 mon≥τ y2).
(iii) Dσ→τ = {f :Dσ →Dτ | for all x, y ∈Dσ , x mon≥σ y ⇒ f (x) mon≥τ f (y)}.

f mon>σ→τ g
def⇐⇒ for all x ∈Dσ , f (x) mon>τ g(x) in Dτ .

mon≥σ→τ
def= mon>σ→τ ∪ id, where σ , τ ∈T.

We call a function in Dσ→τ a hereditary monotone functional. In van de Pol (1994, 1996), it was
called a weakly monotone functional.

7.2 Presheaf with strict partial orders
We define the presheaf of hereditary monotone functionals H ∈ SetF as follows. We assume the
only base type ι.

H(0)=Dι
H(n)=Dιn→ι (for n> 0) H(ρ)(f)= f ◦ 〈πρ1, . . . , πρm〉

where ρ :m→ n, and the projections π i(d1, . . . , dn)= di, and the pairing 〈g1, . . . , gn〉(a)=
(g1(a), . . . , gn(a)). It is equipped with the strict partial orders defined by

>H(0)
def= mon>ι , >H(n)

def= mon>ιn→ι

7.3 Monoid
The presheaf H forms a monoid in SetF. For the unit νHn :V(n)→H(n), we take

νHn (i)= π i

The multiplication μH(m)
n :H(m)×H(n)m � H(n) is defined by the composition:

f ∈H(m) ; g1, . . . , gm ∈H(n) � f ◦ 〈g1, . . . , gm〉.
Then these satisfy the monoid laws (i)–(iii) given in Definition 4.5.

7.4 �-monoid
Suppose that given a signature �, we could define a monotone�-algebra

(H, [fH]f∈� ,>H).

Each operation in the context 0 is a hereditary monotone functional. Next we must verify that
H forms a �-monoid. This is not automatic and depends on the chosen hereditary monotone

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

Mathematical Structures in Computer Science 25

functionals. If we took suitable ones, then the �-monoid laws hold. ‘Second-order polynomials’
are such suitable ones, which we will see next.

7.5 Example of termination proof using a�-monoid of hereditary monotone functionals
Consider the following CS C for case expressions (van de Pol, 1994, 1996) for sums with
η-reduction. Let� = {inl, inr : 〈0〉, case : 〈0, 1, 1〉}.

(C1) X(0), F(1),G(1) � 0 � case(inl(X), F,G) ⇒ F[X]
(C2) Y(0), F(1),G(1) � 0 � case(inr(Y), F,G) ⇒ G[Y]
(C3) E(0),H(1) � 0 � case(E, x.H[inl(x)], y.H[inr(y)]) ⇒ H[E]

It is known that the known syntactic criteria of termination, such as the General Schema (Blanqui,
2000, 2016) criterion, cannot deal with the termination of this example because the lhs of the final
rule is not a higher-order pattern (Miller, 1991). We show the termination of C by using the �-
monoid H of hereditary monotone functionals. Now we take a monotone �-monoid (H,>H)
generated by (N,>) where> is the usual order on the natural numbersN. So, H(0)=N. We take
operations as follows.

νH :V(n)→H(n); νHn (i)= π i

inlH, inrH :H(n)→H(n); inlHn (x)= inrHn (x)= x
caseHn :H(n)×H(n+ 1)×H(n+ 1)→H(n)
caseHn (z, f , g)= f ◦ 〈Id, z〉 + g ◦ 〈Id, z〉 + z + 1

where the constant function 1(u)= 1 and the function pairing is defined by 〈f , g〉(x)= (f (x), g(x)).
The operations are indeedmonotone. Then the�-monoid law holds. For instance, the�-monoid
law (iv) for caseH at n= 1:

μ
(1)
1 (caseH1 (z, f , g);b) = caseH1 (μ

(1)
1 (z, b),μ2

(2)(f ; up
2
1(b), ν2(2)),μ

2
(2)(g; up

2
1(b), ν2(2)))

holds because

lhs= (f ◦ 〈Id, z〉 + g ◦ 〈Id, z〉 + z + 1) ◦ b
= f ◦ 〈b, z ◦ b〉 + g ◦ 〈b, z ◦ b〉 + z ◦ b+ 1

rhs= f ◦ 〈up21(b), π2〉 ◦ 〈Id, z ◦ b〉 + g ◦ 〈up21(b), π2〉 ◦ 〈Id, z ◦ b〉 + z ◦ b+ 1
= f ◦ 〈b ◦ π1 ◦ 〈Id, z ◦ b〉, π2 ◦ 〈Id, z ◦ b〉〉 + g ◦ 〈b ◦ π1 ◦ 〈Id, z ◦ b〉, π2 ◦ 〈Id, z ◦ b〉〉 + z ◦ b+ 1
= lhs

The general case of other operations is proved similarly.
The �-monoid H satisfies the rules. The interpretations of both sides of all the rules are

decreasing: for all x, y, e ∈N=H(0), and for all f , g, h ∈N→N⊆H(1),

(C1) lhs= f (x)+ g(x)+ x+ 1 > f (x)= rhs
(C2) lhs= f (y)+ g(y)+ y+ 1 > g(y)= rhs
(C3) lhs= h(e)+ h(e)+ e+ 1 > h(e)= rhs

There is an admissible assignment φ : Z � H defined by

X(0), Y(0), E(0) �→ 1, F(1),G(1),H(1) �→ λx.x (8)

where the λλ-notation denotes a meta-level function. Thus, ((H, α, ν,μ),>H) forms a well-
founded (�, C, Z)-monoid. By Theorem 6.11, the CS C is meta-terminating.

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

26 M. Hamana

8. On the Existence of Admissible Assignments
To give a (�, C, Z)-monoid, we have required the existence of an admissible assignment in
Definition 6.6 (ii). In this section, we discuss the following natural questions:
(1) Does an admissible assignment always exist for a given CS (�, C, Z) and a candidatemonotone

�-monoid?
(2) If not, when does an admissible assignment exist?

8.1 Analysis
For the question (1), the answer is No. Consider a CS ({a, b : 〈〉}, { � 0 � a⇒ b}, Z) where Z =
{N(2)}. The monotone �-monoid (T�V,→C) satisfies the rule a⇒ b. Consider an assignment
φ : Z � T�V. Since now only the 2-ary metavariable N ∈ Z(2) exists, possible mappings of
φ2 : Z(2) � T�V(2) are the four cases:

φ2 :N �→ a, φ2 :N �→ b, φ2 :N �→ 1 φ2 :N �→ 2.
But none of these is admissible. The first two mappings are not admissible as in (7). For φ2 :
N �→ 1, which assigns the variable 1 to N, interpreting a meta-rewriting N[b, a]⇒C N[b, b], we
have

φ�(N[b, a])= b �→C b= φ�(N[b, b]).
For φ2 :N �→ 2, similarly interpreting a meta-rewriting N[a, a]⇒C N[b, a], we have

φ�(N[a, a])= a �→C a= φ�(N[b, a]).
These failures are due to the fact that the monotone �-monoid (T�V,→C) lacks ‘an operation,
which is monotonic in each argument’.

We next examine a successful case. We take the monotone�-monoid of hereditary monotone
functionals (H,>H) generated by (N,>) as in Section 7.5, where we take operations aHn = 9,
bHn = 8, that is, constant functions returning 9 and 8. Since 9> 8, this satisfies the rule a⇒ b.
Consider an assignment φ2 : Z(2) � H(2) defined by

φ2 :N �→ λxy.x+ y.
It is admissible because applying φ, a rewrite sequence

0 �N[a, a] ⇒C N[b, a] ⇒C N[b, b]
is interpreted as

9+ 9 > 8+ 9 > 8+ 8.
In contrast to this, (T�V,→C) lacked such a ‘+’-like operation.

In general, rather than a binary ‘+’, what we need is a “sum”-like operation that combines
n-elements in a model. So, we call it sum in the next proposition.

Proposition 8.1. Let ((A, νA,μA),>A) be a monotone �-monoid, and Z a metavariable set.
Suppose that for each n≥ 2 with Z(n) �=∅, there exists a monotone morphism sumn :An →A
of SetF such that

μA(sumn(a1, . . . , an);
−→
b)= sumn(μA(a1;

−→
b), · · · ,μ(an;−→b)).

Then an admissible assignment φ : Z � A exists and is given by

φn(M)= sumn(νA(1), . . . , νA(n)) for eachM ∈ Z(n), n≥ 2.

Proof. Using the compatibility of sumn with the multiplication, we see that the morphism σ in
Definition 6.4 is monotone, hence φ is admissible.

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

Mathematical Structures in Computer Science 27

For a 0- or 1-ary metavariable M, we do not need such a sum, because mapping M(0) to an
element in A is no problem, and we can always take the mapping M(1) to the variable 1, which is
admissible.

8.2 Examples
We list examples of monotone morphisms sumn :An →A for known monotone�-monoids.
• Case M�Z. sumn : a1, . . . , an � M[a1, . . . , an]. It has been implicitly used in the proof of

Proposition 6.8, that is, the admissible assignment φn :M �→M[1, . . . , n] was obtained from
this sumn.

• Case H of the �-monoid of hereditary monotone functionals defined in Section 7. sumn :
a1, . . . , an � a1 + · · · + an. Note that van de Pol has considered a similar functional S
of ‘summing up measures’ (van de Pol, 1996)[Definition 4.3.5, Section 4.4] in his hereditary
functional model in order to show the existence of strict functionals.

• Case T�V. There is no canonical choice. One possible example is
- If there is f : 〈0, 0〉 ∈�, then f T�V : T�V×T�V→ T�V is monotone, and compatible with the
multiplication. Thus, we can take

sumn : a1, . . . , an−1, an � f T�V(a1, . . . , f T�V(an−1, an)).

9. Termination of Binding CSs
Let (�, C, Z) be a CS such that every meta-application occurring in rules of C is of the form
Ml[x1, . . . , xl], where every xi is a variable. We call such a CS a binding CS because it is essentially
meta-application free (see also a similar notion of binding TRSs (Hamana, 2003)). To interpret a
rule and meta-rewriting in a binding CS C, we do not need the monoid structure of �-monoids,
that is, the multiplication μ is not used. In this section, we investigate the termination of binding
CSs.

For example, interpreting a meta-term M[1, 2] (for a metavariable M(2)) in a rule by an
assignment φ : Z →A into a�-monoid (A, ν,μ), we have

φ
�
2(M[1, 2])=μ

(2)
2 (φ2(M); ν2(1), ν2(2))= φ2(M).

The second equation is due to the right unit law of the �-monoid A (Definition 4.5 (ii)). So,
to interpret a meta-term like M[1, 2], we need merely an assignment φ. Similarly, when the
arguments of a meta-application are arbitrary variables n1, . . . , nl ∈N, we have

φ�(M[n1, . . . , nl])=μ(φ(M); ν(n1), . . . , ν(nl))=μ(φ(A(ξ)(M)); ν(1), . . . , ν(l))= φ(Mξ)

where M ∈ Z(l); ξ : l→ n, ξ (i)= ni (1≤ i≤ l), and (ξ ,M) ∈ Z(n), because A •V is defined as a
quotient making the above middle equation equal.

We call a meta-term a binding meta-term when any meta-application in it is of the form
M[n1, . . . , nl], where ni ∈N.

Binding meta-terms are meta-terms generated by a signature �, variables V and metavari-
ables Z, where metavariables are substitutable syntactic objects. Hence, we characterise it as a

free (V+�)-algebra over Z defined by B�Z
def= TV+�(Z). Syntactically, B�Z is constructed by a

construction rule

(BMeta)
M ∈ Z(l) 1≤ ni ≤ n (i= 1, . . . , l)

n �M[n1, . . . , nl] ∈ B�Z(n)

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

28 M. Hamana

and the construction rules for variables and function terms in Figure 1. The free (V+�)-algebra
B�Z over Z is constructed by an initial (V+�)+ Z-algebra.

We repeat the discussion of interpretation of rewriting.

Definition 9.1. The interpretation of a meta-term Z � n � t in an (V+�)-algebra (A, [ν, α]) by
an assignment φ : Z →A is denoted by φ�n(t), which is an element of A(n), defined by

φ
�
n(i) = νn(i)

φ
�
n(f (n+ −→i1 .t1, . . . , n+ −→il .tl)) = f An (φ

�
n+i1 (t1), . . . , φ

�
n+il(tl))

φ
�
n(M[n1, . . . , nm]) =A(ξ)(φm(M)),

whereM ∈ Z(m), a map ξ :m→ n in F is defined by ξ (i) def= ni.

Definition 9.2. Let (�, C, Z) be a binding CS. A monotone (V+�)-algebra (A,>A) satisfies a
rewrite rule Z � 0 �
⇒ r if

φ
�
0(
)>A(n) φ

�
0(r)

for all assignments φ : Z � δnA.

Definition 9.3. A (�, C, Z)-algebra A is a monotone (V+�)-algebra A that satisfies all rules of a
CS (�, C, Z).

Notice that a binding CS is a CS built only from binding meta-terms. We define the meta-
rewriting on binding meta-terms by the inference system consisting of

(Rule)

sj ∈ B�Z(n+ ij) (1≤ j≤m) θ = [M1 �→ s1, . . . ,Mm �→ sm]
(M(i1)

1 , . . . ,M(im)
m � 0 �
⇒ r) ∈ C

Z � n � θ�(
)�C θ�(r)
and (Fun) of Figure 4, where ⇒C is replaced with �C . It satisfies �C = ⇒C∩ ⋃

n∈N (B�Z×
B�Z)(n).

Proposition 9.4. Let (�, C, Z) be a binding CS. For any (�, C, Z)-algebra (A, α) and any
assignment φ : Z →A,

Z � n � s�C t ⇒ φ�n(s)>A(n) φ
�
n(t)

Proof. By induction on the proof of s�C t.
• Case (Rule). Suppose that

Z � n � θ
�
0(
)�C θ

�
0(r)

is derived from a rule (Z � 0 �
⇒ r) ∈ C with θ : Z → δnB�Z. Let φ : Z →A be an assign-
ment. Take an assignment ψ as

ψ = Z θ� δnB�Z
δnφ�� δnA

By Lemma 6.9, ψ� = (δnφ)� ◦ θ�. Since A is a (�, C, Z)-algebra, so is δnA. Therefore,
φ�nθ

�
0(
)=ψ

�
0(
) >A(n) ψ

�
0(r)= φ�nθ

�(r)
• Case (Fun). Similarity to the case (Fun) in the proof of Proposition 5.9.

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

Mathematical Structures in Computer Science 29

Theorem 9.5. A binding CS (�, C, Z) is meta-terminating on all binding meta-terms if and only
if there is a well-founded (�, C, Z)-algebra.

Proof. (⇐): Let A be a well-founded (�, C, Z)-algebra. Assume that C is not meta-terminating,
that is, there exists an infinite meta-rewriting sequence

Z � n � t1 �C t2 �C t3 �C · · · .
By Proposition 9.4, for any admissible assignment φ : Z →A,

φ�n(t1)>A(n) φ
�
n(t2)>A(n) φ

�
n(t3)>A(n) · · · .

This contradicts well-foundedness of>A.
(⇒): When a CS C is meta-terminating, the (�, C, Z)-algebra (B�Z,�C) is a desired well-
founded one because the relation�C is well-founded.

Corollary 9.6. Let (�, C, Z) be a binding CS. If there is a well-founded (�, C, Z)-algebra, then C
is terminating.

Proof. It is clear that the meta-termination of C on binding meta-terms implies the termination
of C on terms because all terms are binding meta-terms.

Hence, in the case of binding CSs this becomes an interesting termination proof method by
interpretation because we do not need a monoid structure.

Example 9.7. (Prenex normal forms) We show the termination of the binding CS (�, C, Z)
for conversion into prenex normal forms given in the introduction. Formally, it is given by the
signature� = {∀, ∃ : 〈1〉, ∧,∨ : 〈0, 0〉, ¬ : 〈0〉} and the metavariable set Z = {P(0),Q(1)}. The set C
of rules in de Bruijn levels is obtained by just replacing the variable x with 1.

Z � 0 � P ∧ ∀(1.Q[1]) ⇒ ∀(1.P ∧Q[1]) Z � 0 � ¬∀(1.Q[1]) ⇒ ∃(1.¬(Q[1]))
Z � 0 � ∀(1.Q[1])∧ P ⇒ ∀(1.P ∧Q[1]) Z � 0 � ¬∃(1.Q[1]) ⇒ ∀(1.¬(Q[1]))

We use Theorem 9.5 to show termination. Take a (V+�)-algebraK such that the carrier isK(n)=
N with>K(n) by the standard order> on N for all n ∈N, and the operations are given by

νKn (i)= 0 ∧K
n (x, y)= ∨K

n (x, y)= 2x+ 2y
¬K
n (x)= 2x ∀Kn (x)= ∃Kn (x)= x+ 1.

All operations are monotone. We show that K satisfies the rules: take an assignment φ : X → δnK
by P �→ x ∈N and Q �→ y ∈N, then

φ
�
0(P ∧ ∀(1.Q[1]))= 2x+ 2(y+ 1)>K(0) (2x+ 2y)+ 1= φ

�
0(∀(1.P ∧Q[1]))

φ
�
0(¬∃(1.Q[1]))= 2(y+ 1)>K(0) 2y+ 1= φ

�
0(∀(1.¬(Q[1]))).

The interpretations of other rules are similarly calculated. Since >K(n) => is well-founded, this
shows K forms a well-founded (�, C, Z)-algebra. Thus, the binding CS C is terminating on all
terms by Corollary 9.6.

This interpretation ismuch simpler than the�-monoid of hereditary monotone functionals in
Section 7.Wemerely use ordinary polynomials and did not need to use second-order polynomials
as in Section 7.5. Namely, if a CS is a binding CS, we do not need functionals to interpret second-
order function symbols such as ∀, ∃, λ, λ.

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

30 M. Hamana

Example 9.8. (CPS translation) The binding CS S for a CPS translation in Example 3.3

CPS(E0) ⇒ λk.([E0]) (λm.km)
([V]) ⇒ λk.k V
([λx.E[x]]) ⇒ λk.k (λx.λk.([E[x]]) (λm.km))
([E0E1]) ⇒ λk.([E0]) (λm.([E1]) (λn.mn(λa.k a)))

is shown to be terminating by the following polynomial interpretation: take a (V+�)-algebra K
where the carrier K(n)=N, the unit νKn (x)= 0, and the operations:

CPSKn (e)= 5e+ 5 ([e])Kn = 5e+ 1 λ
K
n (e)= e λKn (e)= e+ 1

(e0 e1)Kn = e0 + e1 (e0 e1)Kn = e0 + e1 + 1.
The (V+�)-algebraK satisfies the rules. We take an assignment φ : Z → δnK by E �→ e ∈N, V �→
v ∈N, E0 �→ e0 ∈N, E0 �→ e0 ∈N. Then all rules are decreasing. For instance, the interpretation
of the last rule is decreasing as

φ
�
0(([E0E1]))= 5(e0 + e1 + 1)+ 1> 5e0 + 1+ (5e1 + 1+ 3)

= φ
�
0(λk.([E0]) (λm.([E1]) (λn.mn(λa.k a)))).

Hence C is terminating by Corollary 9.6.

Example 9.9. (A theory of π-calculus) As the final example, we consider an example taken
from a theory of π-calculus given by Stark. The π-calculus of Milner is one of the most funda-
mental concurrent calculi (Milner, 1999). Stark gave a free algebra model of π-calculus (Stark,
2008). A theory of π-calculus consists of 12 axioms. In Hamana (2019), we have analysed that
the theory should be partitioned into rewrite rules and equations. A reason of doing this is that
commutativity axioms for the sum and the new name generation operators cannot be oriented.
In this example, we consider the termination of the rule part of the theory of π-calculus. We omit
writing contexts. The signature� is

nil : 〈〉 in : 〈0, 1〉 tau : 〈0〉 sum : 〈0, 0〉 out : 〈0, 0, 0〉 new : 〈1〉
and the set C of rules is given by

new(a.X) ⇒ X
sum(nil, X) ⇒ X
new(a.sum(X[a], Y[a])) ⇒ sum(new(a.X[a]), new(a.Y[a]))
new(a.out(a, B, X[a])) ⇒ nil

new(a.out(B, C, X[a])) ⇒ out(B, C, new(a.X[a]))
new(a.in(B, c.X[a, c])) ⇒ in(B, c.new(a.X[a, c]))
new(a.tau(X[a])) ⇒ tau(new(a.X[a]))
new(a.in(a, b.X[a, b])) ⇒ nil

This is a binding CS. Now we take the (V+�)-algebra K where the carrier K(n)=N and the
operations:

νKn (x)= 0 new(x)= 2x+ 1 out(x, y, z)= 2x+ 2y+ 2z + 2
tau(x)= 2x+ 2 in(x, y)= 2x+ 2y+ 2 sum(x, y)= 2x+ 2y+ 4 nil= 1

The (V+�)-algebra K satisfies the rules. We take an assignment φ : Z → δnK that assigns
x, y, b, c ∈N to metavariables X, Y , B, C, respectively. Then all rules are decreasing. For instance,

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

Mathematical Structures in Computer Science 31

the interpretation of the third rule is decreasing as

φ�n(new(a.sum(X[a], Y[a])))= 2(2x+ 2y+ 4)+ 1 > 2(2x+ 1)+ 2(2y+ 1)+ 4
= φ�n(sum(new(a.X[a]), new(a.Y[a])))

Hence C is terminating by Corollary 9.6.

10. Summary
Using the algebraic structures in a presheaf category over finite sets by Fiore, Plotkin and Turi,
we have developed sound and complete models of second-order rewriting systems called second-
order CSs. Restricting the algebraic structures to those equipped with well-founded relations, we
have obtained complete characterisations of terminating CSs. We have also extended the char-
acterisation to rewriting on meta-terms using the notion of �-monoids. A known model of
higher-order rewrite rules given by hereditary monotone functionals has been shown to be an
instance of�-monoids. Moreover, we have also shown that binding CSs have beenmodelled using
simpler algebraic structures, which also simplified the model-based termination proof.

Acknowledgements. I am grateful to Gordon Plotkin, John Power, Neil Ghani and Marcelo Fiore for encouragement,
suggestions and discussions around related topics. I also thank the reviewers for their positive and constructive comments.
This work was supported in part by JSPS KAKENHI Grant Number 20H04164.

Notes
1 It is finitary, hence the initial algebra exists (Adamek, 1974).
2 A signature functor has a canonical strength st :�(A) •A→�(A •A) (Tanaka and Power, 2006, Theorem 6.3) (Fiore,
2008, Corollary 7).

References
Aczel, P. (1978). A General Church-Rosser Theorem. Technical report, University of Manchester.
Adamek, J. (1974). Free algebras and automata realizations in the language of categories. Commentationes Mathematicae

Universitatis Carolinae 15 (589602).
Blanqui, F. (2000). Termination and confluence of higher-order rewrite systems. In: Rewriting Techniques and Application

(RTA 2000), LNCS, vol. 1833. Springer, 47–61.
Blanqui, F. (2016). Termination of rewrite relations on λ-terms based onGirard’s notion of reducibility. Theoretical Computer

Science 611 50–86.
Blanqui, F., Jouannaud, J.-P. and Okada, M. (1999). The calculus of algebraic constructions. In: Rewriting Techniques and

Applications (RTA 1999), LNCS, vol. 1631. Springer, 301–316.
Blanqui, F., Jouannaud, J.-P. and Okada, M. (2002). Inductive data type systems. Theoretical Computer Science 272 41–68.
Cohn, P. (1965). Universal Algebra. Harper & Row.
Danvy, O. and Rose, K. (1998). Higher-order rewriting and partial evaluation. In: Rewriting Techniques and Applications, 9th

International Conference, (RTA’98), LNCS, vol. 1379.
de Bruijn, N. (1972). Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with

application to the Church-Rosser theorem. Indagationes Mathematicae 34 381–391.
Despeyroux, J., Felty, A. and Hirschowitz, A. (1995). Higher-order abstract syntax in Coq. In: Typed Lambda Calculi and

Applications, LNCS, vol. 902, 124–138.
Fiore, M. (2002). Semantic analysis of normalisation by evaluation for typed lambda calculus. In: 4th International Conference

on Principles and Practice of Declarative Programming (PPDP 2002). ACM Press, 26–37.
Fiore, M. (2008). Second-order and dependently-sorted abstract syntax. In: LICS’08, 57–68.
Fiore, M. andHamana,M. (2013). Multiversal polymorphic algebraic theories: Syntax, semantics, translations, and equational

logic. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS, vol. 2013, 520–529.
Fiore, M. and Hur, C.-K. (2010). Second-order equational logic. In: CSL’10, LNCS, vol. 6247, 320–335.
Fiore, M. and Mahmoud, O. (2010). Second-order algebraic theories. In:MFCS’10, LNCS, vol. 6281, 368–380.
Fiore, M., Plotkin, G. and Turi, D. (1999). Abstract syntax and variable binding. In: Proceedings of 14th Annual Symposium

on Logic in Computer Science, 193–202.

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000287

32 M. Hamana

Gandy, R. (1980). Proofs of strong normalization. In: Seldin, J. P. and Hindley, J. R. (eds.) To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism. Academic Press Limited.

Hamana,M. (2003). Term rewriting with variable binding: An initial algebra approach. In: Fifth ACM-SIGPLAN International
Conference on Principles and Practice of Declarative Programming (PPDP’03), 148–159.

Hamana, M. (2004). Free �-monoids: A higher-order syntax with metavariables. In: Asian Symposium on Programming
Languages and Systems (APLAS 2004), LNCS, vol. 3302, 348–363.

Hamana, M. (2005). Universal algebra for termination of higher-order rewriting. In: RTA’05, LNCS, vol. 3467, 135–149.
Hamana, M. (2007). Higher-order semantic labelling for inductive datatype systems. In: PPDP’07, 97–108.
Hamana, M. (2011). Polymorphic abstract syntax via Grothendieck construction. In FoSSaCS’11, LNCS, vol. 3467, 381–395.
Hamana, M. (2017). How to prove your calculus is decidable: Practical applications of second-order algebraic theories and

computation. Proceedings of the ACM on Programming Languages 1 (22) 1–28.
Hamana, M. (2019). How to prove decidability of equational theories with second-order computation analyser SOL. Journal

of Functional Programming 29 (e20).
Hamana, M., Abe, T. and Kikuchi, K. (2020). Polymorphic computation systems: Theory and practice of confluence with

call-by-value. Science of Computer Programming 187 (102322).
Huet, G. and Lankford, D. S. (1978). On the uniform halting problem for term rewriting systems. Technical Report Rapport

Laboria 283, INRIA.
Jouannaud, J.-P. and Rubio, A. (2001). Higher-order recursive path orderings à la carte. In: International Workshop on

Rewriting in Proof and Computation (RPC’01), 161–175.
Klop, J. (1980). Combinatory Reduction Systems. PhD thesis, CWI, Amsterdam, vol. 127. Mathematical Centre Tracts.
Lescanne, P. and Rouyer-Degli, J. (1995). Explicit substitutions with de Bruijn’s levels. In: Rewriting Techniques and

Applications, 6th International Conference (RTA-95), LNCS, vol. 914. Springer, 294–308.
Libal, T. and Miller, D. (2016). Functions-as-constructors higher-order unification. In: Proceedings of FSCD 2016, vol. 52.

LIPIcs, 26:1–26:17.
Mac Lane, S. (1971). Categories for theWorking Mathematician, vol. 5. Graduate Texts inMathematics. Springer-Verlag, New

York.
Mayr, R. and Nipkow, T. (1998). Higher-order rewrite systems and their confluence. Theoretical Computer Science 192 (1)

3–29.
Miculan, M. and Scagnetto, I. (2003). A framework for typed HOAS and semantics. In: Proceedings of PPDP’03. ACM Press,

184–194.
Miller, D. (1991). A logic programming language with lambda-abstraction, function variables, and simple unification. Journal

of Logic and Computation 1 (4) 497–536.
Milner, R. (1999). Communicating and Mobile Systems - The π-Calculus. CUP.
Pfenning, F. and Elliott, C. (1988). Higher-order abstract syntax. In: Proceedings of the ACM SIGPLAN ’88 Symposium on

Language Design and Implementation, 199–208.
Plotkin, G. (1998). Binding algebras: A step between universal algebra and type theory (invited talk). In: Rewriting Techniques

and Applications, 9th International Conference, RTA’98, Tsukuba, Japan.
Stark, I. (2008). Free-algebra models for the π-calculus. Theoretical Computer Science 390 (2–3) 248–270.
Tanaka, M. and Power, J. (2006). A unified category-theoretic semantics for binding signatures in substructural logics. Journal

of Logic and Computation 16 (1) 5–25.
Taylor, W. (1993). Abstract clone theory. Algebras and Orders 389 507–530. NATO ASI Series C.
Turi, D. and Plotkin, G. (1997). Towards a mathematical operational semantics. In: Proceedings of the Twelfth Annual IEEE

Symposium on Logic in Computer Science, LICS ’97, 280–291.
van de Pol, J. (1994). Termination proofs for higher-order rewrite systems. In: The First International Workshop on Higher-

Order Algebra, Logic and Term Rewriting (HOA’93), LNCS, vol. 816, 305–325.
van de Pol, J. (1996). Termination of Higher-order Rewrite Systems. PhD thesis, Universiteit Utrecht. https://cs.au.dk/

jaco/papers/thesis.pdf
Yokoyama, T., Hu, Z. and Takeichi, M. (2003). Deterministic higher-order patterns for program transformation. In: Logic

Based Program Synthesis and Transformation, 13th International Symposium LOPSTR 2003, Uppsala, Sweden, August 25–
27, 2003, Revised Selected Papers, 128–142.

Yokoyama, T., Hu, Z. and Takeichi, M. (2004). Deterministic second-order patterns. Information Processing Letters 89 (6)
309–314.

Zantema, H. (1994). Termination of term rewriting: Interpretation and type elimination. Journal of Symbolic Computation
17 23–50.

Cite this article: Hamana M (2022). Complete algebraic semantics for second-order rewriting systems based on abstract
syntax with variable binding.Mathematical Structures in Computer Science. https://doi.org/10.1017/S0960129522000287

https://doi.org/10.1017/S0960129522000287 Published online by Cambridge University Press

https://cs.au.dk/jaco/papers/thesis.pdf
https://cs.au.dk/jaco/papers/thesis.pdf
https://doi.org/10.1017/S0960129522000287
https://doi.org/10.1017/S0960129522000287

	Complete algebraic semantics for second-order rewriting systems based on abstract syntax with variable binding
	Introduction
	Higher-order abstract syntax and rewriting on higher-order terms
	Algebraic models of structured operational semantics and variable binding
	Rewriting systems and operational semantics

	Background on Algebraic Semantics of Second-order Abstract Syntax
	Introduction to second-order abstract syntax
	Object and metavariables
	Metavariables with arities
	Function symbols with binding arities
	Convention on "10B"10B"10B"10B-equivalence

	The presheaf category SetF
	Algebraic model of abstract syntax and variable binding
	Free -monoids: second-order abstract syntax with metavariables

	Second-Order CSs
	Algebraic Semantics of Meta-terms
	Algebra of meta-terms
	Algebraic characterisation of substitution for metavariables

	Algebraic Semantics of Rewriting
	Semantics
	Benefit of completeness

	Algebraic Semantics of Meta-Rewriting: Monotone -monoids
	Semantics

	Hereditary Monotone Functionals as a -monoid
	Hereditary monotone functionals
	Presheaf with strict partial orders
	Monoid
	-monoid
	Example of termination proof using a -monoid of hereditary monotone functionals

	On the Existence of Admissible Assignments
	Analysis
	Examples

	Termination of Binding CSs
	Summary

