A Foundation for GADTs and Inductive Families

Dependent Polynomial Functor Approach

Makoto Hamana

Gunma University, Japan

Joint work with
Marcelo Fiore, University of Cambridge

This Work

\triangleright Dependent polynomial functor representation of GADTs and Inductive Families, uniformly

Background

N. Gambino and M. Hyland, Wellfounded Trees and Dependent Polynomial Functors, TYPES'03.
J. Kock, Notes on Polynomial functors, manuscript, 412 pages, Version 2009-08-05.

Problem Not clear what are dependent polynomials for GADTs/IFs in these papers

Aim Recipes for dependent polynomials for GADTs/IFs "mathematical codes"

Related Work

Johann and Ghani,
Foundations for structured programming with GADTs, POPL'08.

Our dependent polynomial functor approach
\triangleright Refines this

- Unified framework to deal with GADTs and IFs

ADTs and Programming Techniques

ADTs have a solid foundation: ordinary polynomial functors
It is the basis of various programming techniques:
\triangleright Fold and fusion techniques
[Meijer et al.'91][Launchbury,Sheard'95][Takano,Meijer'95]
[Hu et al.'96][Katsumata,Nisimura'08][Ghani et al.'05][Hinze'10]
\triangleright Polytypic programming [Jansson,Jeuring'97]
\triangleright Generic Haskell [Hinze,Jeuring'03]
\triangleright Program reasoning [Danielsson et al.'06]

- Generic zippers [McBride'01][Morihata et al.'09]
- Polynomial functor representation is useful

To extend this story to GADTs
[I] Polynomial representation of GADTs that generates dependent polynomial functors
[II] Zippers for GADTs (and IFs)

$$
\text { ADTs } \longrightarrow \text { GADTs }
$$

polynomial ft.s
dependent polynomials \& ft.s
zippers, etc.

Review: Meaning of Algebraic Datatypes

```
data List = Nil
    | Cons Int List
```

\triangleright Assumption: set-theoretic models
\triangleright Semantics $=$ the initial \boldsymbol{F}-algebra $\alpha: \boldsymbol{F} \boldsymbol{A} \xrightarrow{\cong} \boldsymbol{A}$

$$
\begin{aligned}
& F: \text { Set } \rightarrow \text { Set } \\
& F(X)=1+\mathbb{Z} \times X
\end{aligned}
$$

\triangleright Point: polynomial functor \boldsymbol{F} characterises List
\triangleright How can we extend this to GADTs?

I. How to Model GADTs

GADTs with Type-level Data

\triangleright Bounded natural numbers

```
data Z
data S a
data Fin :: * -> * where
    Zero :: Fin (S a)
    Succ :: Fin a -> Fin (S a)
```


Modelling Fin

data Fin : : * $->$ * where

```
Zero :: Fin (S a)
    Succ :: Fin a -> Fin (S a)
```

\triangleright What is the polynomial functor for Fin?
\triangleright Answer: $\boldsymbol{F}_{\boldsymbol{F i n}}: \boldsymbol{\operatorname { S e t }}^{U} \rightarrow \boldsymbol{\operatorname { S e t }}^{U}$

$$
\begin{aligned}
& \boldsymbol{F}_{F i n}(\boldsymbol{X})(\mathrm{S} \boldsymbol{a})=\mathbf{1}+\boldsymbol{X}(\boldsymbol{a}) \\
& \boldsymbol{F}_{\boldsymbol{F i n}}(\boldsymbol{X})(\boldsymbol{a})=\varnothing \quad \text { otherwise }
\end{aligned}
$$

\llbracket Fin』 $=$ the initial $\boldsymbol{F}_{\text {Fin }}$-algebra Fin $\in \operatorname{Set}^{U}$
\triangleright How to derive? What are "polynomials"?
\triangleright Dependent polynomials

The Universe of Discourse

ADTs

Set
the category of sets polynomial ft.

GADTs

Set U
the category of U-indexed sets dependent polynomial ft.

Category of Indexed Sets

\triangleright Category $\mathbf{S e t}^{U}$
for an arbitrary set \boldsymbol{U}

- Objects: $\boldsymbol{A}: \boldsymbol{U} \rightarrow$ Set
i.e. \boldsymbol{U}-indexed sets $\{A(i) \mid i \in U\}$
- Arrows: \boldsymbol{U}-indexed functions $\boldsymbol{f}: \boldsymbol{A} \rightarrow \boldsymbol{B}$,
i.e. a family of functions $(\boldsymbol{f}(\boldsymbol{i}): \boldsymbol{A}(\boldsymbol{i}) \rightarrow \boldsymbol{B}(\boldsymbol{i}) \mid \boldsymbol{i} \in \boldsymbol{U})$
\triangleright Important functors: given a function $\boldsymbol{h}: \boldsymbol{I} \rightarrow \boldsymbol{J}$,

Lawvere's quantifiers by adjointness [1969]

Dependent Polynomials [Gambino-Hyland'03]

\triangleright Def. A (dependent) polynomial \boldsymbol{P} is a triple $\boldsymbol{P}=(\boldsymbol{d}, \boldsymbol{p}, \boldsymbol{c})$ of functions between sets

$$
I \stackrel{d}{\longleftrightarrow} E \xrightarrow{p} B \xrightarrow{c} J .
$$

\triangleright NB. the original version uses a Iccc and slices

Dependent Polynomials [Gambino-Hyland’03]

\triangleright Def. The dependent polynomial functor $\boldsymbol{F}_{\boldsymbol{P}}$ associated to a dependent polynomial $\boldsymbol{P}=(\boldsymbol{d}, \boldsymbol{p}, \boldsymbol{c})$ is defined by

$$
\begin{aligned}
& \boldsymbol{F}_{P}: \operatorname{Set}^{I} \rightarrow \operatorname{Set}^{J} \\
& \boldsymbol{F}_{P}(\boldsymbol{X}) \stackrel{\text { def }}{=} \boldsymbol{\Sigma}_{c}\left(\Pi_{p}\left(\boldsymbol{d}^{*}(\boldsymbol{X})\right)\right) .
\end{aligned}
$$

\triangleright i.e.

$$
F_{P}(X)(j)=\sum_{\substack{b \in B \\ j \equiv c(b)}} \prod_{\substack{e \in E \\ b \equiv p(e)}} X(d(e))
$$

Modelling Fin

data Fin : : * -> * where
Zero : : Fin (S a)
Succ : : Fin a $->$ Fin (S a)
\triangleright Model constructors as polynomials

$$
\begin{array}{ll}
\text { Zero }= & \boldsymbol{U} \stackrel{!}{\leftarrow} \varnothing \xrightarrow{!} \boldsymbol{U} \xrightarrow{\mathrm{s}} \boldsymbol{U} \\
\text { Succ }= & \boldsymbol{U} \stackrel{\mathrm{id}}{\leftarrow} \boldsymbol{U} \xrightarrow{\mathrm{id}} \boldsymbol{U} \xrightarrow{\mathrm{~s}} \boldsymbol{U}
\end{array}
$$

Modelling Fin

```
data Fin :: * -> * where
    Zero :: Fin (S n)
    Succ :: Fin n -> Fin (S n)
```

\triangleright Sum of polynomials is again a polynomial

$$
\text { Fin } \stackrel{\text { def }}{=} \text { Zero }+ \text { Succ }
$$

\triangleright Dependent polynomial functor $\boldsymbol{F}_{\boldsymbol{F i n}}: \boldsymbol{S e t}^{U} \rightarrow$ Set U

$$
\begin{aligned}
F_{F i n}(X)(n) & =F_{\text {Zero }+ \text { Succ }}(X)(n) \\
& =F_{\text {Zero }}(X)(n)+F_{\text {Succ }}(X)(n) \\
& =\Sigma_{\mathrm{S}} \Pi_{!}!^{*}(X)(n)+\Sigma_{\mathrm{S}} \Pi_{\mathrm{id}} \mathrm{id}^{*}(X)(n) \\
& \left.=\sum_{\substack{a \in U \\
n \equiv \mathrm{~S} a}}(1+X(a))\right)
\end{aligned}
$$

Modelling Fin

\triangleright Dependent polynomial functor

$$
\left.F_{F i n}(X)(n)=\sum_{\substack{a \in U_{a} \\ n \equiv \mathrm{~S} a}}(1+X(a))\right)
$$

is equivalent to the definition by pattern-matching

$$
\begin{aligned}
& \boldsymbol{F}_{\boldsymbol{F i n}}: \operatorname{Set}^{U} \rightarrow \operatorname{Set}^{U} \\
& \boldsymbol{F}_{\boldsymbol{F i n}}(\boldsymbol{X})(\mathrm{S} \boldsymbol{a})=\mathbf{1}+\boldsymbol{X}(\boldsymbol{a}) \\
& \boldsymbol{F}_{\boldsymbol{F i n}}(\boldsymbol{X})(\boldsymbol{a})=\varnothing \quad \text { otherwise }
\end{aligned}
$$

\triangleright Initial algebra is constructed by repeated applications of $\boldsymbol{F}_{\boldsymbol{F i n}}$
Thm. [Gambino-Hyland'03]
Every dependent polynomial functor has an initial algebra.

Example: Fin

(1) data Fin : : * $->$ * where

```
    Zero :: Fin (S n)
    Succ :: Fin n -> Fin (S n)
```

(2) Polynomial

$$
\begin{array}{ll}
\text { Zero }= & U \stackrel{!}{\bullet} \varnothing \xrightarrow{!} U \xrightarrow{\mathrm{~s}} \boldsymbol{U} . \\
\text { Succ }= & \boldsymbol{U} \stackrel{\mathrm{id}}{\longleftarrow} \boldsymbol{U} \xrightarrow{\mathrm{id}} \boldsymbol{U} \xrightarrow{\mathrm{~s}} \boldsymbol{U} .
\end{array}
$$

(3) Dependent polynomial functor $\boldsymbol{F}_{\boldsymbol{F i n}}:$ Set $^{\boldsymbol{U}} \rightarrow \mathbf{S e t}^{U}$

$$
\left.F_{F i n}(X)(n)=\sum_{\substack{a \in U \\ n \equiv S a}}(1+X(a))\right)
$$

General Case: Simple GADT
data $D: *^{n} \rightarrow *$ where

$$
K: \forall \bar{\alpha}^{l}, \bar{\epsilon}^{m} \cdot D\left(d_{1}[\bar{\alpha}, \bar{\epsilon}]\right) \rightarrow \cdots \rightarrow D\left(d_{k}[\bar{\alpha}, \bar{\epsilon}]\right) \rightarrow D(c[\bar{\alpha}])
$$

\triangleright Polynomial
(functions $\boldsymbol{d}_{\boldsymbol{i}}: \boldsymbol{U}^{l+m} \rightarrow \boldsymbol{U}^{n}, \quad c: \boldsymbol{U}^{l} \rightarrow \boldsymbol{U}^{n}$)

$$
\boldsymbol{U}^{n} \stackrel{\left[d_{1}, \ldots, d_{k}\right]}{<} \boldsymbol{k} \boldsymbol{U}^{l+m} \xrightarrow{\nabla_{k}} \boldsymbol{U}^{l+m} \xrightarrow{c \pi_{l}} \boldsymbol{U}^{n}
$$

- "Co-diagonal" $\nabla_{k}=\left[\mathrm{id}_{U}, \ldots, \mathrm{id}_{U}\right]: \boldsymbol{k} \boldsymbol{U} \rightarrow \boldsymbol{U}$
\triangleright Dependent polynomial functor $\boldsymbol{F}_{\boldsymbol{D}}: \boldsymbol{\operatorname { S e t }}^{U^{n}} \rightarrow \boldsymbol{\operatorname { S e t }}^{U^{n}}$

$$
F_{D} X(m)=\sum_{\substack{j \in U \\ m \equiv c(j)}} X\left(d_{1}(j)\right) \times \cdots \times X\left(d_{k}(j)\right)
$$

II. Application: Zippers

Zippers

\triangleright G. Huet, Functional Pearl: The Zipper, Journal of Functional Programming, 1997.
\triangleright A data structure for navigating a tree freely
\triangleright A zipper $=$ current forcus $\&$ lists of depth-one contexts
\triangleright Generic way to give the type of depth-one contexts
\triangleright McBride's finding

- Binary trees $\boldsymbol{F}(\boldsymbol{X})=\mathbf{1}+\boldsymbol{X} \times \boldsymbol{X}$
- Depth-one contexts $\boldsymbol{F}^{\prime}(\boldsymbol{X})=\boldsymbol{X}+\boldsymbol{X}$-differentiation
\triangleright Only for ADTs and polynomial functors
\triangleright Extension to GADTs/IFs and dependent polynomial functors

Differentiation

\triangleright Dependent polynomial functor $\boldsymbol{F}: \boldsymbol{S e t}^{I} \rightarrow \boldsymbol{S e t}^{J}$

$$
F(X)(j)=\sum_{\substack{b \in B \\ j \equiv c(b)}} \prod_{e \in E_{b}} X(d(e))
$$

\triangleright Partial derivative of \boldsymbol{F} with respect to $\boldsymbol{i} \in \boldsymbol{I}$

$$
\begin{aligned}
& \partial_{i} \boldsymbol{F}: \operatorname{Set}^{I} \rightarrow \operatorname{Set}^{J} \\
& \partial_{i} \boldsymbol{F}(X)(j)=\sum_{\substack{e \in \in \\
j \equiv c(b)}} \sum_{\substack{\ell \in b_{b} \\
i \equiv d(\ell)}} \prod_{e \in E_{b} \backslash\{\ell\}} X(d(e))
\end{aligned}
$$

Derived from differentiation of generalised species
[Fiore FOSSACS'05, etc.]

Zipper Datatype

\triangleright For dependent polynomial functor \boldsymbol{F} for an GADT/IF,

$$
\begin{aligned}
Z i p p e r(m) & \stackrel{\text { def }}{=} \mu F(m) \times C t x(m) \\
C t x(m) & \cong 1+\sum_{n \in I} \partial_{m} F(\mu F)(n) \times C t x(n)
\end{aligned}
$$

\triangleright Navigation operations are defined accordingly

Summary

\triangleright Polynomial representation of GADTs
\triangleright that automatically generates dependent polynomial functors
\triangleright Zippers for GADTs by differentiation

Reference

Comanion slides at AIM-DTP'11 Shonan Workshop are available from my homepage

- More on inductive families

Related Work

1. Initial algebras for GADTs. Johann and Ghani [POPL'08]
\triangleright Use Left Kan extension for representing the codomains

$$
\operatorname{Lan}_{h} \dashv(-\circ h) \dashv \operatorname{Ran}_{h}
$$

Ours: Dependent polynomial functors
® Use all constructs, i.e. more structured

$$
\Sigma_{h} \dashv h^{*} \dashv \Pi_{h}
$$

2. Indexed containers. Altenkirch and Morris [LICS'09]
\triangleright Type theoretic characterisations

- Mathematically equivalent

3. Indexed functors. Löh, Magalhães [WGP'11]

Relationships

(1) Indexed containers, Altenkirch and Morris
(2) Dependent polynomials, Gambino, Hyland; Hamana, Fiore
(3) Indexed functors, Löh, Magalhães

Problem \downarrow Indexed functor may not have an initial algebra

