Algebraic Semantics of

Higher-Order Abstract Syntax and Second-Order Rewriting

Makoto Hamana

Department of Computer Science,
Gunma University, Japan

International School on Rewriting (ISR 2015),
August 10-14, 2015, Leipzig, Germany
I. Higher-Order Abstract Syntax

1. What is HOAS
2. Algebraic semantics
3. AIM: Meta-terms form a free $\boldsymbol{\Sigma}$-monoid
II. Second-Order Rewrite System
4. Definition of CRS
5. Algebraic interpretation
6. AIM: CRS rewriting forms a monotone ($\boldsymbol{\Sigma}, \mathcal{R})$-algebra
7. Termination by interpretation
II. Algebraic Semantics of

Second-Order Rewrite System

Algebraic Semantics of Second-Order Rewrite System

\triangleright Definition of CRS
\triangleright Monotone $\boldsymbol{\Sigma}$-algebra in $\boldsymbol{S e t}^{\mathbb{F}}$
\triangleright Main Theorem
A CRS \mathcal{R} is terminating iff there is a well-founded ($\mathrm{V}+\boldsymbol{\Sigma}, \mathcal{R}$)-algebra.
\triangleright Examples

TRS: Review

Term Rewriting System (TRS) \mathcal{R} :

$$
\begin{aligned}
f a c t(0) & \rightarrow S(0) \\
\operatorname{fact}(S(x)) & \rightarrow \operatorname{fact}(x) * S(x)
\end{aligned}
$$

Terms are defined by

$$
T_{\Sigma}(X) \ni \quad t::=x \mid f\left(t_{1}, \ldots, t_{m}\right)
$$

The rewrite relation

$$
\rightarrow_{\mathcal{R}} \quad \subseteq \quad T_{\Sigma}(X) \times T_{\Sigma}(X)
$$

is defined by

$$
\frac{s \rightarrow r \in \mathcal{R}}{l \theta \rightarrow \mathcal{R} r \theta} \quad \frac{s \rightarrow_{\mathcal{R}} t}{f(\ldots, s, \ldots) \rightarrow_{\mathcal{R}} f(\ldots, t, \ldots)}
$$

where θ is a substitution $\theta: \boldsymbol{X} \rightarrow \boldsymbol{T}_{\boldsymbol{\Sigma}}(\boldsymbol{X})$

Combinatory Reduction System (CRS) [Klop'80]

Eg. A transformation to prenex normal forms

$$
\begin{array}{lll}
\mathrm{P} \wedge \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) & \rightarrow \forall(\boldsymbol{x} \cdot \mathrm{P} \wedge \mathrm{Q}[\boldsymbol{x}]) & \neg \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \\
\forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \wedge \mathrm{P} & \rightarrow \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}] \wedge \mathrm{P}) & \neg \exists(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \rightarrow \exists(\mathrm{Q}[\boldsymbol{x}])) \\
\rightarrow \forall(\boldsymbol{x} \cdot \neg(\mathrm{Q}[\boldsymbol{x}]))
\end{array}
$$

Def.
Variables $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \cdots$
Meta-variables $\quad Z^{(l)}$ (arity $\left.l\right), \cdots \in \boldsymbol{Z}$
Function symbols $f^{(l)}$ (arity l), $\cdots \in \boldsymbol{\Sigma}$
Meta-terms $t::=x\left|f^{(l)}\left(\vec{x}_{1} . s_{1}, \ldots, \vec{x}_{l} s_{l}\right)\right| \mathrm{Z}^{(l)}\left[t_{1}, \ldots, t_{l}\right]$
Rewrite rules $\boldsymbol{\mathcal { R }} \quad \boldsymbol{t}_{\boldsymbol{1}} \rightarrow \boldsymbol{t}_{\boldsymbol{2}} \quad$ (with some syntactic conditions)
Rewrite relation $\rightarrow_{\mathcal{R}}$ on terms $\mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V}$

$$
\frac{l \rightarrow r \in \mathcal{R}}{\theta^{\sharp}(l) \rightarrow_{\mathcal{R}} \theta^{\sharp}(r)} \quad \frac{s \rightarrow_{\mathcal{R}} t}{f(\ldots, \vec{x} . s, \ldots) \rightarrow_{\mathcal{R}} f(\ldots, \vec{x} . t, \ldots)}
$$

Valuation $\theta: \boldsymbol{Z} \rightarrow \mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V}$ maps a metavariable to a term as $\mathrm{z} \mapsto \boldsymbol{t}$

Presheaf with transitive relation $\left(A,>_{A}\right)$

Def. A presheaf $\boldsymbol{A} \in \mathbf{S e t}^{\mathbb{F}}$ is equipped with a transitive relation $>_{\boldsymbol{A}}$ if
(1) $>_{A}$ is a family $\left\{>_{A(n)}\right\}_{n \in \mathbb{F}}$,
where $\boldsymbol{P}_{\boldsymbol{A}(\boldsymbol{n})}$ is a transitive relation on $\boldsymbol{A}(\boldsymbol{n})$ (family)
(2) for all $\boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{A}(\boldsymbol{m})$ and $\rho: \boldsymbol{m} \rightarrow \boldsymbol{n}$ in \mathbb{F}, if $\boldsymbol{a}>_{\boldsymbol{A}(\boldsymbol{m})} \boldsymbol{b}$, then $\boldsymbol{A}(\rho)(\boldsymbol{a})>_{\boldsymbol{A}(\boldsymbol{n})} \boldsymbol{A}(\rho)(\boldsymbol{b})$. (natural)

Def. $\left(A_{1},>_{A_{1}}\right), \ldots,\left(A_{l},>_{A_{l}}\right),\left(B,>_{B}\right)$
A arrow $\boldsymbol{f}: \boldsymbol{A}_{\mathbf{1}} \times \cdots \times \boldsymbol{A}_{\boldsymbol{l}} \longrightarrow \boldsymbol{B}$ in $\mathbf{S e t}^{\mathbb{F}}$ is monotone if

$$
f(n)\left(a_{1}, \ldots, a_{l}\right)>_{B(n)} f(n)\left(b_{1}, \ldots, b_{l}\right)
$$

$\boldsymbol{A}_{\boldsymbol{k}}(\boldsymbol{n}) \ni \boldsymbol{a}_{\boldsymbol{k}}>_{A(n)} \boldsymbol{b}_{\boldsymbol{k}} \in \boldsymbol{A}_{\boldsymbol{k}}(\boldsymbol{n})$ for some \boldsymbol{k}, and $\boldsymbol{A}_{j}(n) \ni \boldsymbol{a}_{j} \geq_{A(n)} \boldsymbol{b}_{j} \in \boldsymbol{A}_{j}(n)$ for all $\boldsymbol{j} \neq \boldsymbol{k}$.

Term-generated assignment
a $\mathbf{V}+\boldsymbol{\Sigma}$-algebra \boldsymbol{A}
a valuation $\boldsymbol{\theta}: \boldsymbol{Z} \rightarrow \mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V} \cdots$ an arrow of $\boldsymbol{S e t}^{\mathbb{F}}$
Def. A term-generated assignment $\hat{\boldsymbol{\theta}}: \boldsymbol{Z} \rightarrow \boldsymbol{A}$ is given by

$$
\boldsymbol{Z} \xrightarrow{\theta} \mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V} \xrightarrow{!_{A}} \boldsymbol{A}
$$

where $!_{\boldsymbol{A}}$ is the unique $\mathbf{V}+\boldsymbol{\Sigma}$-algebra homomorphism from an initial algebra $\mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V}$.

Examples
$\triangleright \boldsymbol{A}=\mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V}$ (Terms)
$\triangleright \boldsymbol{A}=\mathrm{M}_{\Sigma} \boldsymbol{Z}$ (Meta-terms)
$\triangleright A=\mathbf{H}$ (for clones)

Monotone Algebra

Def. A monotone $\mathbf{V}+\boldsymbol{\Sigma}$-algebra $\left(\boldsymbol{A},>_{\boldsymbol{A}}\right)$ is a $\mathbf{V}+\boldsymbol{\Sigma}$-algebra

$$
A=\left(A,\left\{\nu, f^{A}\right\}_{f \in \Sigma}\right)
$$

equipped with a transitive relation $>_{A}$ such that every operation $\boldsymbol{f}^{\boldsymbol{A}}$ is monotone.
\boldsymbol{A} is well-founded if $>_{\boldsymbol{A}(\boldsymbol{n})}$ is well-founded for every \boldsymbol{n}.

Monotone Algebra

a CRS \mathcal{R}
Def. A monotone $\mathrm{V}+\boldsymbol{\Sigma}$-algebra $\left(\boldsymbol{A},>_{\boldsymbol{A}}\right)$ satisfies a rewrite rule

$$
Z \mid n \vdash l \rightarrow r
$$

if for all term-generated assignments $\hat{\boldsymbol{\theta}}: \boldsymbol{Z} \rightarrow \boldsymbol{A}$,

$$
\begin{equation*}
\hat{\theta}_{n}^{\sharp}(l)>_{A(n)} \hat{\theta}_{n}^{\sharp}(r), \tag{1}
\end{equation*}
$$

holds.

A $(\mathrm{V}+\boldsymbol{\Sigma}, \mathcal{R})$-algebra \boldsymbol{A} is
a monotone $\mathbf{V}+\boldsymbol{\Sigma}$-algebra \boldsymbol{A} that satisfies all rules in $\boldsymbol{\mathcal { R }}$.

Interpretation in $(\mathbf{V}+\boldsymbol{\Sigma}, \mathcal{R})$-algebra

$$
Z \mid n \vdash l \rightarrow r \in \mathcal{R}
$$

a unique Σ-monoid morphism

$$
\theta_{n}^{\sharp}(l) \rightarrow_{\mathcal{R}} \theta_{n}^{\sharp}(r)
$$

... a rewrite
$\mathrm{V}+\boldsymbol{\Sigma}$-algebra \boldsymbol{A}

$$
!_{A} \theta_{n}^{\sharp}(l)>_{A(n+k)}!_{A} \theta_{n}^{\sharp}(l)
$$

... an interpretation

Example of $(\mathbf{V}+\boldsymbol{\Sigma}, \boldsymbol{R})$-Algebra: Polynomial Interp.

$\triangleright \forall(\boldsymbol{y} \cdot \exists(x .(\neg \mathbf{p}(x) \vee \mathbf{q}(\boldsymbol{y}))))$.
$\triangleright \mathbf{V}+\boldsymbol{\Sigma}$-algebra $\left(\boldsymbol{K}_{\mathbb{N}},>_{K_{\mathbb{N}}}\right) \quad K_{\mathbb{N}} \in \mathbf{S e t}^{\mathbb{F}}$

- carrier $\boldsymbol{K}_{\mathbb{N}}(n)=\mathbb{N}$
- operations $\quad \nu_{n}^{K_{N}}(\boldsymbol{x})=\mathbf{0}$

$$
\begin{aligned}
\wedge_{n}^{K_{\mathbb{N}}}(\boldsymbol{x}, \boldsymbol{y})= & \vee_{n}^{K_{\mathrm{N}}}(\boldsymbol{x}, \boldsymbol{y})=2 \boldsymbol{x}+\mathbf{y} \boldsymbol{y} \quad \neg_{n}^{K_{\mathrm{N}}}(\boldsymbol{x})=\mathbf{x} \boldsymbol{x} \\
& \forall_{n}^{K_{\mathbb{N}}}(\boldsymbol{x})=\exists_{\boldsymbol{n}}^{K_{\mathbb{N}}}(\boldsymbol{x})=\boldsymbol{x}+\mathbf{1}
\end{aligned}
$$

All operations are monotone.
$-\boldsymbol{x}>_{K_{\mathbb{N}}(\boldsymbol{n})} \boldsymbol{y} \quad \Leftrightarrow \quad \boldsymbol{x}>_{\mathbb{N}} \boldsymbol{y}$
\triangleright CRS

$$
\mathrm{P} \wedge \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \rightarrow \forall(\boldsymbol{x} \cdot \mathrm{P} \wedge \mathrm{Q}[\boldsymbol{x}])
$$

Important Example of $(\mathbf{V}+\boldsymbol{\Sigma}, \mathcal{R})$-Algebra

Terms with Rewrites
Prop. The presheaf $\mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V}$ of terms is equipped with the transitive relation $\left\{\rightarrow_{\mathcal{R}(n)}^{+}\right\}_{n \in \mathbb{N}}$.

Proof. Transitivity of each $\rightarrow_{\mathcal{R}(n)}^{+}$is immediate.
It is also natural: we have

$$
\frac{n \vdash s \rightarrow_{\mathcal{R}} t}{n^{\prime} \vdash \rho(s) \rightarrow_{\mathcal{R}} \rho(t)}
$$

for any $\rho: \boldsymbol{n} \rightarrow \boldsymbol{n}^{\prime}$ in \mathbb{F}, by induction on proof trees.

Important Example: Term Algebra

Thm. $\left(\mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V}, \rightarrow_{\mathcal{R}}^{+}\right)$is an $(\mathbf{V}+\boldsymbol{\Sigma}, \mathcal{R})$-algebra.

Moreover, it is initial:
There exists a unique monotone homomorphism $\mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V} \longrightarrow \boldsymbol{A}$, for any $(\mathbf{V}+\boldsymbol{\Sigma}, \boldsymbol{\mathcal { R }})$-algebra \boldsymbol{A}.

Proof.
Since $\mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V}$ is an initial $\mathbf{V}+\boldsymbol{\Sigma}$-algebra, $\boldsymbol{!}_{\boldsymbol{A}}: \mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V} \longrightarrow \boldsymbol{A}$ is a unique $\mathbf{V}+\boldsymbol{\Sigma}$-algebra homomorphism.

It remains to show $!_{A}$ is monotone, i.e.

$$
s \rightarrow+_{\mathcal{R}}^{+} t \Rightarrow!_{A(n)}(s)>_{A(n)}!_{A(n)}(t)
$$

By induction on the proof of $s \rightarrow_{\mathcal{R}}^{+} t$.

Corollary

Cor. $\quad \boldsymbol{n} \vdash \boldsymbol{s} \rightarrow_{\mathcal{R}}^{+} \boldsymbol{t}$ holds.

$$
\Leftrightarrow
$$

$!_{A(n)}(s)>_{A(n)}!_{A(n)}(t)$
for any monotone homomorphism !: $\mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V} \longrightarrow \boldsymbol{A}$ to $(\mathrm{V}+\boldsymbol{\Sigma}, \mathcal{R})$-algebra $\left(\boldsymbol{A},>_{A}\right)$.

Proof. $[\Rightarrow]$: By the previous theorem.
$[\Leftarrow]:$ Take $\left(A,>_{A}\right)=\left(\mathrm{T}_{\Sigma} \mathbf{V}, \rightarrow_{\mathcal{R}}^{+}\right)$.

Main Theorem

Thm. A CRS $\boldsymbol{\mathcal { R }}$ is terminating iff there is a well-founded ($\mathrm{V}+\boldsymbol{\Sigma}, \mathcal{R}$)-algebra.

Proof. (\Leftarrow) : Suppose a well-founded $(\mathbf{V}+\boldsymbol{\Sigma}, \mathcal{R})$-algebra $\left(A,>_{A}\right)$. Assume $\boldsymbol{\mathcal { R }}$ is non-terminating:

$$
n \vdash t_{1} \rightarrow_{\mathcal{R}} t_{2} \rightarrow_{\mathcal{R}} \cdots
$$

By the previous Corollary,

$$
!_{A(n)}\left(t_{1}\right)>_{A(n)}!_{A(n)}\left(t_{2}\right)>_{A(n)} \cdots
$$

Contradiction.
(\Rightarrow) : When a CRS \mathcal{R} is terminating, the initial $(\mathbf{V}+\boldsymbol{\Sigma}, \mathcal{R})$-algebra $\left(\mathrm{T}_{\Sigma} \mathrm{V}, \rightarrow_{\mathcal{R}}^{+}\right)$is a desired well-founded algebra.

- Proof methond of termination of CRS:

Find a well-founded $(\mathbf{V}+\boldsymbol{\Sigma}, \mathcal{R})$-algebra.

Example

Binding signature $\boldsymbol{\Sigma}=\{c:\langle\mathbf{0}\rangle\} . \quad \mathrm{CRS} \mathcal{R}$

$$
\mathrm{F}^{1}, \mathrm{X}^{1} \mid \mathbf{1} \vdash \boldsymbol{c}(\mathrm{F}[\mathrm{~F}[\mathrm{X}[1]]]) \rightarrow \mathrm{F}[\mathrm{X}[1]] .
$$

\triangleright Intuitively, this CRS is terminating: at any rewrite step the number of \boldsymbol{c}-symbols decreases.
\triangleright The interpretation method of higher-order rewriting uses hereditary monotone functionals cannot show termination of \mathcal{R} due to the incompleteness [van de Pol '93 '96].
\triangleright Take the monotone $\mathbf{V}+\boldsymbol{\Sigma}$-algebra $\left(\mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V}, \succ_{\mathbf{T}_{\boldsymbol{\Sigma}} \mathbf{V}}\right)$

$$
s \succ_{\mathrm{T}_{\Sigma} \mathrm{V}(n)} t
$$

if the number of \boldsymbol{c}-symbols in \boldsymbol{s} and \boldsymbol{t}
\triangleright Any assignment into $\mathbf{T}_{\Sigma} \mathbf{V}$ is of the form $\mathrm{F} \mapsto \boldsymbol{c}^{k}(\boldsymbol{x}), \mathrm{x} \mapsto \boldsymbol{c}^{m}(\boldsymbol{x})$
\triangleright This gives a well-founded $(\mathbf{V}+\boldsymbol{\Sigma}, \boldsymbol{\mathcal { R }})$-algebra.

Example

$$
\begin{aligned}
\operatorname{map}(x \cdot \mathrm{~F}[x], \text { nil }) & \rightarrow \text { nil } \\
\operatorname{map}(x \cdot \mathrm{~F}[x], \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(\mathrm{F}[y], \operatorname{map}(x \cdot \mathrm{~F}[x], y s))
\end{aligned}
$$

$\triangleright \mathbf{V}+\boldsymbol{\Sigma}$-algebra, carrier: presheaf of clones $\mathbf{H} \in$ Set $^{\mathbb{F}}$

$$
\begin{aligned}
\mathbf{H}(\mathbf{0}) & =\mathbb{N} \\
\mathbf{H}(\boldsymbol{n}) & =\left(\mathbb{N}^{n} \rightarrow \mathbb{N}\right) \quad(\text { for } \boldsymbol{n}>0) \\
\mathbf{H}(\rho)(\boldsymbol{f}) & =\boldsymbol{f} \circ\left\langle\pi_{\rho 1}, \ldots, \pi_{\rho m}\right\rangle
\end{aligned}
$$

operations (at n): \quad nil $_{n}^{\mathbf{H}}=\mathbf{K 1}: \mathbb{N}^{n} \rightarrow \mathbb{N}$

$$
\begin{aligned}
\operatorname{cons}_{n}^{\mathrm{H}}(x, y) & =(+) \circ\langle x, y, \mathrm{~K} 2\rangle: \mathbb{N}^{n} \rightarrow \mathbb{N} \\
\operatorname{map}_{n}^{\mathrm{H}}(f, a) & =f \circ\langle\mathrm{id}, \mathrm{~K} 3\rangle+(\times) \circ\langle a, f \circ\langle\mathrm{id}, a\rangle\rangle \\
\nu_{n}^{\mathrm{H}}(0) & =\mathrm{K} 0
\end{aligned}
$$

Example of Termination Proof

metavariables P^{0} and Q^{1}. CRS $\boldsymbol{\mathcal { R }}$.

$$
\begin{array}{ll}
\mathrm{P} \wedge \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \rightarrow \forall(\boldsymbol{x} \cdot \mathrm{P} \wedge \mathrm{Q}[\boldsymbol{x}]) & \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \wedge \mathrm{P} \rightarrow \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}] \wedge \mathrm{P}) \\
\mathrm{P} \vee \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \rightarrow \forall(\boldsymbol{x} \cdot \mathrm{P} \vee \mathrm{Q}[\boldsymbol{x}]) & \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \vee \mathrm{P} \rightarrow \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}] \vee \mathrm{P}) \\
\mathrm{P} \wedge \exists(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \rightarrow \exists(\boldsymbol{x} \cdot \mathrm{P} \wedge \mathrm{Q}[\boldsymbol{x}]) & \exists(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \wedge \mathrm{P} \rightarrow \exists(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}] \wedge \mathrm{P}) \\
\mathrm{P} \vee \exists(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \rightarrow \exists(\boldsymbol{x} \cdot \mathrm{P} \vee \mathrm{Q}[\boldsymbol{x}]) & \exists(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \vee \mathrm{P} \rightarrow \exists(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}] \vee \mathrm{P}) \\
\neg \forall(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \rightarrow \exists(\boldsymbol{x} \cdot \neg(\mathrm{Q}[\boldsymbol{x}])) & \neg \exists(\boldsymbol{x} \cdot \mathrm{Q}[\boldsymbol{x}]) \rightarrow \forall(\boldsymbol{x} \cdot \neg(\mathrm{Q}[\boldsymbol{x}]))
\end{array}
$$

(1) Give the de Bruijn level notation version of $\boldsymbol{\mathcal { R }}$
(2) Show termination of \mathcal{R} by a polynomial interpretation.

Example of Termination Proof

\triangleright Just replace the variable \boldsymbol{x} with $\mathbf{1}$.

$$
\begin{array}{lll}
\mathrm{P} \wedge \forall(1 . \mathrm{Q}[1]) & \rightarrow \forall(1 . \mathrm{P} \wedge \mathrm{Q}[1]) & \neg \forall(1 . \mathrm{Q}[1])
\end{array} \rightarrow \exists(1 . \neg(\mathrm{Q}[1])),
$$

etc.
\triangleright Define a monotone $\mathbf{V}+\boldsymbol{\Sigma}$-algebra $\left(\boldsymbol{K},>_{\boldsymbol{K}}\right)$

- carrier $\boldsymbol{K}(\boldsymbol{n})=\mathbb{N}$
- order $>_{K(n)}$ is the standard order $>$ on \mathbb{N}

Take the operations as the polynomials.

$$
\begin{gathered}
\wedge^{K_{\mathbb{N}}}(\boldsymbol{x}, \boldsymbol{y})=\vee^{K_{\mathbb{N}}}(\boldsymbol{x}, \boldsymbol{y})=\mathbf{2} \boldsymbol{x}+\mathbf{2} \boldsymbol{y} \\
\neg^{K_{\mathbb{N}}}(\boldsymbol{x})=\mathbf{2 x} \quad \forall^{K_{\mathbb{N}}}(\boldsymbol{x})=\exists^{K_{\mathbb{N}}}(\boldsymbol{x})=\boldsymbol{x}+\mathbf{1}
\end{gathered}
$$

All operations are monotone.
We show that $\boldsymbol{K}_{\mathbb{N}}$ satisfies the rules: take an assignment

$$
\varphi_{n}^{\sharp}(\mathrm{P} \wedge \forall(1 \cdot \mathrm{Q}[1]))=2 x+2(y+1)>_{K_{\mathbb{N}}(n)}(2 x+2 y)+1
$$

$$
=\varphi_{n}^{\sharp}(\forall(1 . \mathrm{P} \wedge \mathrm{Q}[1]))
$$

$$
\varphi_{n}^{\sharp}(\neg \exists(1 \cdot \mathrm{Q}[1]))=2(y+1)>_{K_{\mathrm{N}}(n)} 2 y+1=\varphi_{n}^{\sharp}(\forall(1 . \neg(\mathrm{Q}[1])))
$$

Other rules are similar.
Since $>_{\boldsymbol{K}_{\mathbb{N}}(\boldsymbol{n})}=>$ is well-founded, this shows $\boldsymbol{K}_{\mathbb{N}}$ is a well-founded ($\mathrm{V}+\boldsymbol{\Sigma}, \mathcal{R}$)-algebra.

Hence the "binding" CRS \mathcal{R} is terminating.
(cf. Section 9 of the lecture note)

