
1

A Functional Implementation of

Function-as-Constructor Higher-Order Unification

Makoto Hamana

Department of Computer Science,

Gunma University, Japan

September 3, UNIF 2017, Oxford



2

This Work

B [Libal and Miller FSCD’16]: A new decidable class of higher-order

unification problems, Functions-as-Constructors unification (FCU)

B Report here that FCU unification can be implemented functionally

B SOL: Haskell-based tool for analysing confluence and termination

of second-order computatoin rules

– HO version of Knuth and Bendix’s critical pair checking

using FCU unification



3

Example: Computation Rules on Sum types

case : a1 + a2, (a1 → c), (a2 → c) → c

inl : a1 → a1 + a2 inr : a2 → a1 + a2

(caseL) case(inl(X), F, G) ⇒ F (X)

(caseR) case(inr(Y ), F, G) ⇒ G(Y )

(sumEta) case(Z, λx.H[inl(x)], λy.H[inr(y)]) ⇒ H[Z]

λx.H[inl(x)], λx.H[inr(y)] are not higher-order patterns



4

Higher-Order Patterns [Miller’91]

B A higher-order pattern

is a term where every application is of the form M [x1, . . . , xn]

i.e.

a free variable M applied to distinct bound variables x1, . . . , xn.

B Not HO patterns

– M [N ]

– M [cons(x, y)]

– λx.H[inl(x)]

– λy.H[inr(y)]



5

FC patterns [Yokoyama et al. ’04][Libal, Miller ’17]

B An FC pattern is a term p,

where every occurrence of M [t1, . . . , tn] in p:

(i) every ti is a term without binders or free variables,

can contain fun. syms with arity n > 0 and bound variables

(ii) every ti contains at least one bound variable,

(iii) ti 6Etj for every 1 ≤ i, j ≤ n.

B FC patterns:

λx.y.M [cons(x, y)] λx.H[inl(x)] λy.H[inr(y)]

B Not FC patterns:

M [N ] λx.M [x, x] M [nil] λx.M [x, c(x)]



6

FC Pattern Matching and Notice

Thm. [Yokoyama et al. Inf. Process. Lett.’04]

Any second-order FC pattern matching problem p
?
= t between an

FU pattern p and a λ-term t is decidable and

has a single most general matcher if matchable.

But the unification between FC patterns

x.y.M [c(x), c(y)]
?
= x.y.c(N [y, x])

has at least two incomparable unifiers:

{M 7→ x.y.y, N 7→ x.y.x} and {M 7→ x.y.x, N 7→ x.y.y}.



7

FCU Unification

B Libal and Miller’ Functions-as-Constructors Unification

(FCU) [FSCD’16]

B A FCU unification problem is s
?
= t

where s and t are FC patterns and satisfies:

– Global restriction: in s
?
= t, for every two different

occurrences of applications M [s1, . . . , sn] and N [t1, . . . , tm],

si 6C tj holds

B Thm. An FCU unification problem is decidable and ensures the

existence of a most general unifier if solvable.

B Yokoyama et al.’s example actually violates the global restriction

x.y.M [c(x), c(y)]
?
= x.y.c(N [y, x])



8

Implementation

B Written in Haskell (about 500 lines)

B as a part of SOL system

B Algorithm in [Libal,Miler’16] is not immediately ready

B Base Nipkow’s ML implementation of pattern unification

– a basic library and infrastructure for higher-order unification

– e.g. on-the-fly α-conversion and η-expansion.



9

FCU Algorithm

a slight modification of Libal and Miller’s, adapted to Nipkow’s

formalism

(idem) Q∀ t
?
= t → Q∀ [] ∅

(abs) Q∀ λx.s
?
= λx.t → x, Q∀ s

?
= t ∅

(fun) Q∀ f −→s ?
= f

−→
t → Q∀ s1

?
= t1, . . . , sn

?
= tn ∅

(flex-rigid) Q∀ F
−→
t

?
= f −→s → Q∀ []

{F 7→ λ−→z .discharge (zip
−→
t −→z ) (f−→s )}

(flex-flex=) Q∀ F
−→
t

?
= F −→s → Q∀ []

{X 7→ λz1, . . . , zn.H−→z ′}
where −→z ′ = (zi | 1 ≤ i ≤ n, ti = si)

(flex-flex6=) Q∀ F
−→
t

?
= G −→s → Q∀ s

?
= t

{Y 7→ λz1, . . . , zm.H−−→zϕ(i)},

where ϕ(j) = i if ti = sj for i = 1, . . . , n, j = 1, . . . , m.



10

Actual Transformation Relation

〈Q∀, (s
?
= t) : E, θ〉 - 〈Q

′
∀, E

′
++ (Eθ

′
)↓β, θ

′ ◦ θ 〉

if 〈Q∀, s
?
= t〉 → 〈Q′

∀, E′, θ′〉

B (−)↓β computes the β-normal form

B apply the “pruning’’ operation if applicable



11

Discharging

B Operation t|
−→s−→z Yokoyama et al. [I. P. L. ’04] called

“discharging”, gave a complicated algorithm

B Replace terms −→s in t with variables −→z .

B Similar to substitution of terms for variables,

B Hence, implement t|
−→s−→z as discharge θ t

discharge :: [(Term, Id)] -> Term -> Term

discharge th t’ = case lookup t’ th of

Just z -> O z

Nothing -> case t of

(x :.: t1) -> x :.: discharge th t1

(t1 :@ t2) -> (discharge th t1) :@ (discharge th t2)

t’ -> t’



12

Unificatoin Function

unif bvs (th,(s,t))

processes a unificatoin problem 〈Q∀, (s
?
= t), θ〉.

unif :: [(Char,Id)] -> ([(Id, Term)], (Term, Term)) -> [(Id, Term)]

unif bvs (th,(s,t)) = case (devar th s,devar th t) of

(x:.:s,y:.:t) -> unif ((’B’,x):bvs) (th,(s,if x==y then t

else rename x y t))

(s,t) -> cases bvs th (s,t)

cases bvs th (s,t) = case (strip s,strip t) of

((W _F,ym),(W _G,zn)) -> flexflex bvs (_F,ym,_G,zn,th)

((W _F,ym),_) -> flexrigid bvs (_F,ym,t,th)

(_,(W _F,ym)) -> flexrigid bvs (_F,ym,s,th)

((a,sm),(b,tn)) -> rigidrigid bvs (a,sm,b,tn,th)



13

Example: Computation Rules on Sum types

case : a1 + a2, (a1 → c), (a2 → c) → c

inl : a1 → a1 + a2 inr : a2 → a1 + a2

(caseL) case(inl(X), F, G) ⇒ F (X)

(caseR) case(inr(Y ), F, G) ⇒ G(Y )

(sumEta) case(Z, λx.H[inl(x)], λy.H[inr(y)]) ⇒ H[Z]



14

Conclusion

B Report here that FCU unification can be implemented functionally

B SOL: Haskell-based tool for analysing confluence and termination

of second-order computatoin rules

– HO version of Knuth and Bendix’s critical pair checking

using FCU unification


