A Functional Implementation of

Function-as-Constructor Higher-Order Unification

Makoto Hamana

Department of Computer Science, Gunma University, Japan

September 3, UNIF 2017, Oxford

This Work

\triangleright [Libal and Miller FSCD'16]: A new decidable class of higher-order unification problems, Functions-as-Constructors unification (FCU)
\triangleright Report here that FCU unification can be implemented functionally
\triangleright SOL: Haskell-based tool for analysing confluence and termination of second-order computatoin rules

- HO version of Knuth and Bendix's critical pair checking using FCU unification

Example: Computation Rules on Sum types

Higher-Order Patterns [Miller'91]

\triangleright A higher-order pattern
is a term where every application is of the form $\boldsymbol{M}\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}\right]$ i.e.
a free variable \boldsymbol{M} applied to distinct bound variables $\boldsymbol{x}_{\boldsymbol{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$.
\triangleright Not HO patterns

- $M[N]$
- $\boldsymbol{M}[\operatorname{cons}(\boldsymbol{x}, \boldsymbol{y})]$
- $\boldsymbol{\lambda} \boldsymbol{x} . \boldsymbol{H}[\mathrm{inl}(\boldsymbol{x})]$
- $\boldsymbol{\lambda} \boldsymbol{y} . \boldsymbol{H}[\operatorname{inr}(\boldsymbol{y})]$

FC patterns [Yokoyama et al. '04][Libal, Miller '17]
\triangleright An FC pattern is a term \boldsymbol{p}, where every occurrence of $M\left[\boldsymbol{t}_{1}, \ldots, \boldsymbol{t}_{\boldsymbol{n}}\right]$ in \boldsymbol{p} :
(i) every $\boldsymbol{t}_{\boldsymbol{i}}$ is a term without binders or free variables, can contain fun. syms with arity $\boldsymbol{n}>\mathbf{0}$ and bound variables
(ii) every $\boldsymbol{t}_{\boldsymbol{i}}$ contains at least one bound variable,
(iii) $\boldsymbol{t}_{\boldsymbol{i}} \not \mathbb{\boldsymbol { t }} \boldsymbol{\boldsymbol { j }} \boldsymbol{j}$ for every $\mathbf{1} \leq \boldsymbol{i}, \boldsymbol{j} \leq \boldsymbol{n}$.
\triangleright FC patterns:
$\boldsymbol{\lambda} \boldsymbol{x} \cdot \boldsymbol{y} \cdot \boldsymbol{M}[\operatorname{cons}(\boldsymbol{x}, \boldsymbol{y})] \quad \boldsymbol{\lambda} \boldsymbol{x} \cdot \boldsymbol{H}[\operatorname{inl}(\boldsymbol{x})] \quad \boldsymbol{\lambda} \boldsymbol{y} \cdot \boldsymbol{H}[\operatorname{inr}(\boldsymbol{y})]$
\triangleright Not FC patterns:

$$
M[N] \quad \lambda x . M[x, x] \quad M[\text { nil }] \quad \lambda x . M[x, c(x)]
$$

FC Pattern Matching and Notice

Thm. [Yokoyama et al. Inf. Process. Lett.'04]
Any second-order FC pattern matching problem $\boldsymbol{p} \stackrel{?}{=} \boldsymbol{t}$ between an FU pattern \boldsymbol{p} and a $\boldsymbol{\lambda}$-term \boldsymbol{t} is decidable and has a single most general matcher if matchable.

But the unification between FC patterns

$$
x \cdot y \cdot M[\subset(x), \subset(y)] \stackrel{?}{=} x \cdot y \cdot \subset(N[y, x])
$$

has at least two incomparable unifiers:

$$
\{M \mapsto x . y \cdot \boldsymbol{y}, \boldsymbol{N} \mapsto \boldsymbol{x} \cdot \boldsymbol{y} \cdot \boldsymbol{x}\} \text { and }\{M \mapsto \boldsymbol{x} \cdot \boldsymbol{y} \cdot \boldsymbol{x}, \boldsymbol{N} \mapsto \boldsymbol{x} \cdot \boldsymbol{y} \cdot \boldsymbol{y}\}
$$

FCU Unification

\triangleright Libal and Miller' Functions-as-Constructors Unification (FCU) [FSCD'16]
\triangleright A FCU unification problem is $\boldsymbol{s} \stackrel{?}{=} \boldsymbol{t}$ where s and t are FC patterns and satisfies:

- Global restriction: in $\boldsymbol{s} \stackrel{?}{=} \boldsymbol{t}$, for every two different occurrences of applications $M\left[s_{1}, \ldots, s_{n}\right]$ and $N\left[t_{1}, \ldots, t_{m}\right]$, $\boldsymbol{s}_{\boldsymbol{i}} \boldsymbol{\forall} \boldsymbol{t}_{\boldsymbol{j}}$ holds
\triangleright Thm. An FCU unification problem is decidable and ensures the existence of a most general unifier if solvable.
\triangleright Yokoyama et al.'s example actually violates the global restriction

$$
x \cdot y \cdot M[\subset(x), \subset(y)] \stackrel{?}{=} x \cdot y \cdot \subset(N[y, x])
$$

Implementation

\triangleright Written in Haskell (about 500 lines)
\triangleright as a part of SOL system
\triangleright Algorithm in [Libal,Miler'16] is not immediately ready
\triangleright Base Nipkow's ML implementation of pattern unification

- a basic library and infrastructure for higher-order unification
- e.g. on-the-fly α-conversion and η-expansion.

FCU Algorithm

a slight modification of Libal and Miller's, adapted to Nipkow's formalism

$$
\begin{aligned}
& \text { (idem) } \quad \boldsymbol{Q}_{\forall} \quad \boldsymbol{t} \stackrel{?}{=} \boldsymbol{t} \rightarrow \quad \boldsymbol{Q}_{\forall} \quad \text { [] } \\
& \text { (abs) } \quad Q_{\forall} \quad \lambda x . s \stackrel{?}{=} \lambda x . t \quad \rightarrow \quad x, Q_{\forall} \quad s \stackrel{?}{=} t \\
& \text { (fun) } \\
& Q_{\forall} \quad f \vec{s} \stackrel{?}{=} f \vec{t} \quad \rightarrow \quad Q_{\forall} \quad s_{1} \stackrel{?}{=} t_{1}, \ldots, s_{n} \stackrel{?}{=} t_{n} \\
& \text { (flex-rigid) } \quad Q_{\forall} \quad F \vec{t} \stackrel{?}{=} f \vec{s} \quad \rightarrow \quad Q_{\forall} \quad \text { [] } \\
& \{F \mapsto \lambda \vec{z} \text {.discharge (zip } \vec{t} \vec{z})(f \vec{s})\} \\
& \text { (flex-flex=) } \quad \boldsymbol{Q}_{\forall} \quad \boldsymbol{F} \overrightarrow{\boldsymbol{t}} \stackrel{?}{=} \boldsymbol{F} \overrightarrow{\boldsymbol{s}} \quad \rightarrow \quad \boldsymbol{Q}_{\forall} \quad \text { [] } \\
& \left\{X \mapsto \lambda z_{1}, \ldots, z_{n} \cdot H \vec{z}^{\prime}\right\} \\
& \text { where } \vec{z}^{\prime}=\left(z_{i} \mid 1 \leq i \leq n, t_{i}=s_{i}\right) \\
& \text { (flex-flex } \neq \text {) } \quad Q_{\forall} \quad \boldsymbol{F} \overrightarrow{\boldsymbol{t}} \stackrel{?}{=} G \vec{s} \quad \rightarrow \quad Q_{\forall} \quad s \stackrel{?}{=} t \\
& \left\{\boldsymbol{Y} \mapsto \lambda \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{m} \cdot \boldsymbol{H} \overrightarrow{\boldsymbol{z}_{\varphi(i)}}\right\}, \\
& \text { where } \varphi(j)=i \text { if } t_{i}=s_{j} \text { for } i=1, \ldots, n, j=1, \ldots, m \text {. }
\end{aligned}
$$

Actual Transformation Relation

$$
\left\langle Q_{\forall},(s \stackrel{?}{=} t): E, \theta\right\rangle \longrightarrow\left\langle Q_{\forall}^{\prime}, \boldsymbol{E}^{\prime}+\left(\boldsymbol{E} \theta^{\prime}\right) \downarrow_{\beta}, \theta^{\prime} \circ \theta\right\rangle
$$

if $\left\langle Q_{\forall}, s \stackrel{?}{=} t\right\rangle \rightarrow\left\langle Q_{\forall}^{\prime}, E^{\prime}, \theta^{\prime}\right\rangle$
$\triangleright(-) \downarrow_{\beta}$ computes the β-normal form
\triangleright apply the "pruning" operation if applicable

Discharging

\triangleright Operation $t \mid \underset{\underset{z}{\vec{*}}}{\vec{\sim}} \quad$ Yokoyama et al. [I. P. L. '04] called "discharging", gave a complicated algorithm
\triangleright Replace terms $\overrightarrow{\boldsymbol{s}}$ in \boldsymbol{t} with variables $\overrightarrow{\boldsymbol{z}}$.
\triangleright Similar to substitution of terms for variables,
\triangleright Hence, implement $t \mid \underset{\underset{z}{\vec{s}}}{\vec{\sim}}$ as discharge $\theta \mathrm{t}$

```
discharge :: [(Term, Id)] -> Term -> Term
```

discharge th t' = case lookup t' th of
Just z -> 0 z
Nothing -> case t of

$$
\begin{aligned}
& \text { (} \mathrm{x}: .: \mathrm{t} 1 \text {) }->\mathrm{x}: .: \text { discharge th to } \\
& \text { (} \mathrm{t} 1 \text { :@ to) }->\text { (discharge th to) :@ (discharge th to) } \\
& \text { t' } \quad>\mathrm{t} \text {, }
\end{aligned}
$$

Unificatoin Function

unif bvs (th, (s,t))
processes a unificatoin problem $\left\langle\boldsymbol{Q}_{\forall},(\boldsymbol{s} \stackrel{?}{=} \boldsymbol{t}), \boldsymbol{\theta}\right\rangle$.

```
unif :: [(Char,Id)] -> ([(Id, Term)], (Term, Term)) -> [(Id, Term)]
unif bvs (th, (s,t)) = case (devar th s,devar th t) of
    (x:.:s,y:.:t) -> unif (('B',x):bvs) (th,(s,if x==y then t
    else rename x y t))
    (s,t) -> cases bvs th (s,t)
```

cases bvs th (s, t) = case (strip s,strip t) of
((W _F,ym), (W _G,zn)) -> flexflex bvs (_F,ym, $G, z n, t h)$
((W _F,ym),) $\quad->$ flexrigid bvs (_F,ym,t,th)
(_, (W _F,ym)) -> flexrigid bvs (_F,ym,s,th)
($(\mathrm{a}, \mathrm{sm}),(\mathrm{b}, \mathrm{tn})$) \quad > rigidrigid bvs (a,sm,b,tn,th)

Example: Computation Rules on Sum types

case
$: a_{1}+a_{2},\left(a_{1} \rightarrow c\right),\left(a_{2} \rightarrow c\right) \rightarrow c$
inl

$$
: a_{1} \rightarrow a_{1}+a_{2} \quad \text { inr }: a_{2} \rightarrow a_{1}+a_{2}
$$

(caseL) \quad case(inl $(\boldsymbol{X}), \boldsymbol{F}, \boldsymbol{G}) \quad \Rightarrow \boldsymbol{F}(\boldsymbol{X})$
(caseR) case(inr($\boldsymbol{Y}), \boldsymbol{F}, \boldsymbol{G}) \quad \Rightarrow \boldsymbol{G}(\boldsymbol{Y})$
(sumEta) case $(\boldsymbol{Z}, \boldsymbol{\lambda} \boldsymbol{x} \cdot \boldsymbol{H}[\operatorname{inl}(\boldsymbol{x})], \boldsymbol{\lambda} \boldsymbol{y} \cdot \boldsymbol{H}[\operatorname{inr}(\boldsymbol{y})]) \quad \Rightarrow \boldsymbol{H}[\boldsymbol{Z}]$

Conclusion

\triangleright Report here that FCU unification can be implemented functionally
\triangleright SOL: Haskell-based tool for analysing confluence and termination of second-order computatoin rules

- HO version of Knuth and Bendix's critical pair checking using FCU unification

