
GSOL: A Confluence Checker for Haskell
Rewrite Rules

Yao Faustin Date and Makoto Hamana

1 Department of Computer Science, Gunma University, Japan
t201d047@gunma-u.ac.jp

2 Faculty of Informatics, Gunma University, Maebashi, Japan
hamana@cs.gunma-u.ac.jp

Abstract. We present a tool GSOL, a confluence checker for GHC. It
checks the confluence property for rewrite rules in a Haskell program
by using the confluence checker SOL (Second-Order Laboratory). The
Glasgow Haskell Compiler (GHC) allows the user to use rewrite rules
to optimize Haskell programs in the compilation pipeline. Currently,
GHC does not check the confluence of the user-defined rewrite rules.
If the rewrite rules are not confluent then the optimization using these
rules may produce unexpected results. Therefore, checking the conflu-
ence of rewrite rules is important. We implement GSOL using the plugin
mechanism of GHC and provide three usages: (1) a stand-alone com-
mand gsol, (2) checking by Cabal building, and (3) a Web interface
http://solweb.mydns.jp/. We demonstrate confluence checking of the
rewrite rules in the Arrow library.

1 Introduction

The Glasgow Haskell Compiler (GHC) [MJ12] is an open source compiler and in-
teractive environment for the functional language Haskell [Mar10]. It has builtin
transformation rules to optimize Haskell programs during the compilation [JS98].
The user can also add rewrite rules to a program to specify optimizing transfor-
mations [JTH01]. The notion of confluence is one of the important properties
of rewrite rules known in the theory of rewriting [Hue80]. Confluence guaran-
tees the uniqueness of normal forms, which is particularly desirable in functional
programming. However, GHC does not attempt to check the confluence of user-
defined rewrite rules.

In this paper, we present GSOL, a GHC plugin to check the confluence of
rewrite rules in a Haskell program. It uses a confluence checker, Second-Order
Laboratory (SOL) [Ham19,HAK20]. To illustrate our work, we consider the fol-
lowing Haskell program that involves two rewrite rules.

module F where e = f 99

{-# RULES {-# NOINLINE f #-}

"f/0" forall x. f x = 0 f :: Integer -> Integer

"f/1" forall x. f x = 1 f x = 0

#-}

2 Yao Faustin Date and Makoto Hamana

The code within the {-# ... #-} is called a pragma3. In the RULES pragma,
there are two rules named "f/0" and "f/1". If the the compiler chooses to apply
the rule "f/0" then the expression f 99 is rewritten to 0. If it chooses to apply
the rule "f/1" then the expression f 99 is rewritten to 1. Therefore, they are
not confluent. But the GHC compiler does not notice this non-confluence.

To the best of our knowledge, there is no tool to check the confluence of
rewrite rules directly from a Haskell program. In the field of term rewriting, a
few confluence checkers for higher-order rewrite systems have been developed
[OKAT17,NFM17,Ham19]. We use the tool SOL [Ham19,HAK20] to check the
confluence of GHC rewrite rules. Since SOL has been shown to be the strongest
tool among the existing confluence tools that participated in the Higher-Order
Rewriting category of the International Confluence Competition 2018 [AHH+18]
and 2020 [CoC20], we believe that this is the best choice for confluence checking
of Haskell rewrite rules.

Related work. Rewrite rules have been used as a way to automate the opti-
mization process of functional programs [HL+20,JTH01,PCMK12,SFLD15]. We
mention two recent works.

In [SFLD15], Steuwer et al. applied rewrite rules to transform a high-level
functional program into a low-level functional representation from which OpenCL
code is generated. They showed that this approach offered performance on a par
with highly tuned code for multi-core CPUs and GPUs written by experts.

In [HL+20], a high-level program H was rewritten into an equivalent program
but with lower lever constructs L. Then the program L went through code gener-
ation to produce platform specific program. The language of rewriting strategies
ELEVATE was used to rewrite high-level RISE program into low-level RISE
program. ELEVATE forced the user to specify the rules to apply and the order
of application. Hence they avoided the issue of non-confluence.

This work. In the previous works on rewrite rules for optimizations includ-
ing [HL+20,JTH01,PM+05,PCMK12,SFLD15], confluence and termination of
rewrite rules have not been checked automatically although ensuring them has
been recognized as an important problem. In this work, we solve this prob-
lem by applying the result of well-established rewriting technology to the real-
world functional programming language Haskell. We use an automatic confluence
checker SOL to check the confluence of GHC rewrite rules in a Haskell program.

Organisation. This paper is organised as follows. In §2, we first explain neces-
sary background for developing GSOL. We then explain our implementation in
§3. In §4, we demonstrate an example of arrows. In §5, we discuss future work.

3 The NOINLINE pragma instructs the compiler not to expand f 99 by using the func-
tion definition. Without this indication, f 99 is inlined to 0 before applying the
rewrite rules, resulting that no rewrite rules are fired.

GSOL: A Confluence Checker for Haskell Rewrite Rules 3

2 Background

GHC. The compilation process of a Haskell program consists of
three big steps: frontend, optimizer, and backend. The fron-
tend consists of parsing, type checking and the transformation
into the GHC’s intermediate language called GHC Core, imple-
menting System FC [MMJK07]. A GHC Core expression con-
sists of variables, literals, abstractions, applications and vari-
able bindings. The optimizer optimizes the GHC Core pro-
gram through various transformations. The simplifier imple-
ments most of those transformations using a set of builtin rules
[JS95,JS98,JWS96]. The simplifier can also use rewrite rules
specified in the program. The optimization of a GHC Core pro-
gram is divided in a series of Core-to-Core translations. The
simplifier is one of them. The role of the backend is to generate
code for different platforms.

GHC plugins. The plugin mechanism of GHC [GHC20] allows programmers
to insert their own passes in the compilation pipeline. We use it to implement a
confluence checker. Our plugin receives a Core program, checks local confluence
and termination, and outputs the result of the checks but does not modify the
Core program.

GHC rewrite rules. The user can use rewrite rules in a Haskell program
to teach the compiler optimizing transformations specific to their programs
[JTH01]. The syntax of rewrite rules is:

{-# RULES

"name" forall <var>...<var>. f <expr> = <expr>

...

#-}

The left-hand side of a rule must be a function application f <expr> where the
function f is in the scope. The left-hand side and right-hand side of the rewrite
rules are parsed as Core expressions at the compile time and forms rewrite rules
on Core, which we call Core rules.

Notion of confluence. Term rewriting [BN98,Ter03] is a research field of
theoretical computer science. It studies rewrite relations on term structures us-
ing various relational, order theoretic, and algebraic methods. There are two
important properties of rewrite relation, namely, termination and confluence.

M
∗
~~}}

}}
} ∗

ÃÃA
AA

AA

M1

∗ ÃÃA
AA

AA
CR M2

∗~~}}
}}

}

N

M

ÄÄÄÄ
ÄÄ

Ä
ÂÂ?

??
??

M1

∗ ÂÂ?
??

??
LCR M2

∗ÄÄÄÄ
ÄÄ

Ä

N

Termination (which means strong
normalisation) is to reach the nor-
mal form in finite time by any
way of rewriting. Confluence (CR)
is a property of the rewrite relation,
stating that any two divergent com-
putation paths are joinable, as shown in the diagram. Confluence ensures the
existence of unique normal forms, which is desirable in functional programming.

4 Yao Faustin Date and Makoto Hamana

To deduce confluence, Newman’s lemma is useful [Hue80]. It states “termi-
nation and local confluence implies confluence”. Local confluence (LCR) is a
weakened variant of the confluence property that states that if there is two (dif-
ferent) ways of one step rewriting “→” from a term M , then there exists a term
N , to which the divergent terms M1 and M2 can be rewritten by many step
rewriting “→∗”.

To prove local confluence, we should check all possible situations that admit
two ways of rewriting, and also to check their convergence. Instead of examining
possibly infinite number of such situations, it has been shown that checking the
joinability of finite number of critical divergent terms, called critical pairs, is
enough to conclude local confluence [BN98]. Critical pairs can be enumerated
by computing overlaps between the left-hand sides of rules using high-order
unification. For example, there is a critical pair (1, 0) in the rewrite rules of the
module F.hs given in Introduction.

Our tool GSOL can automatically show it as follows:

******** Critical pairs ********

1: Overlap (1)-(2)--- X’|-> X ---------------------

(1) |f(X)| => 1

(2) f(X’) => 0

f(X)

1 <-(1)-/\-(2)-> 0

---> 1 =#= 0 <---

#NON 1 joinable... (Total 1 CPs)

..

NO

This shows that the left-hand sides f(X), f(X’) of the rules are unifiable by the
unifier {X’ 7→ X}. It produces a term f(X), which is rewritten to two different
terms 1, 0 forming a critical pair. If these can be rewritten to a common term,
then we conclude local confluence. But in this case, these are already different
normal forms. Therefore, this non-joinability is an evidence of non-confluence,
hence this outputs NO.

SOL. SOL is an implementation of a formal framework of second-order compu-
tation systems, which is a computational counterpart of second-order algebraic
theories [FH10,FM10]. This framework has been used in [Ham19].

Second-order computation systems are based on second-order abstract syntax
given by the language of meta-terms [Ham04]:

t ::= x | x.t | f(t1, . . . , tn) | M [t1, . . . , tn].

These forms are respectively variables, abstractions, and function terms, and the
last form is called a meta-application. A meta-application M [t1, . . . , tn] means:
when we instantiate M with a term s, free variables of s are replaced with
(meta-)terms t1, . . . , tn.

The meta-terms have second-order types [Ham19]. Computation rules are
pairs of meta-terms. Appendix A provides a complete definition.

GSOL: A Confluence Checker for Haskell Rewrite Rules 5

{-# RULES

"compose/arr" forall f g. (arr f) . (arr g) = arr (f . g)

"first/arr" forall f. first (arr f) = arr (first f)

"compose/first" forall f g. (first f) . (first g) = first (f . g)

"product/arr" forall f g. arr f *** arr g = arr (f *** g)

...

#-} Fig. 1. Rewrite rules in Control.Arrow (excerpt)

3 Implementation

We implemented GSOL as a Core plugin to check the confluence of GHC rewrite
rules. Our plugin is installed into the beginning of the optimization pipeline. The
plugin proceeds as the following three steps:

1. Collecting the Core rules.
2. Translating them to SOL rules.
3. Calling SOL for checking. SOL performs the checking functions and print

the output to the standard output.

The translation of Core rules is done by applying a structural recursive transla-
tion of Core terms to both sides of each rule. It is basically a known encoding
method used in [Ham19,HAK20], which encodes λ-terms to meta-terms (cf. §B).

We provided three ways to use GSOL: (1) a stand-alone shell command gsol
for a single Haskell file, (2) checking all files in a Cabal package by specifying
options and using the cabal build command, and (3) a Web interface.

4 Example: Arrow

In this section, we demonstrate GSOL by examining the Arrow library of GHC.
Arrows [Hug00,Pat01] provide a way to programming with various computa-
tional effects in Haskell. Control.Arrow is a library in the Haskell base package.
Arrows are implemented using a type class:

class Category a => Arrow a where

arr :: (b -> c) -> a b c

first :: a b c -> a (b,d) (c,d)

...

Instances of the arrow class satisfy various laws. Most important laws are the
laws of Freyd category ([Pat01, Fig. 1: Arrow equations]), which come from the
semantics of arrows [HJ06], hence are they valid for any instance of arrows.
Slight different specific laws have been described in Control.Arrow as GHC
rewrite rules, which are excerpted in Fig. 1. Note that the file also includes
other extensions including ArrowChoice and their laws4. We try to check the
confluence of them.
4 Notice that the rewrite rules defined there are valid only when the instance is a =

(->). But it is not mentioned in the file Control.Arrow. We do not know why such
specific laws (rather than the Freyd category laws) were described as rewrite rules.

6 Yao Faustin Date and Makoto Hamana

(1) Stand-alone command. We check the joinability of critical pairs in the
Control.Arrow library in the shell by invoking the command:

> gsol cri Control_Arrow.hs

It reports 8 critical pairs and all are non-joinable (cf. Fig. 6), such as:

7 : first(arr(x.f[x])) . first(g)

(compose/first)

wwooooooooooo
(first/arr)

''OOOOOOOOOOO

first(arr(x.f[x]) . g) 6= arr(first(y.f[y])) . first(g)

Since these are normal forms, it shows non-confluence of the rewrite rules in
Control.Arrow, which has not been reported elsewhere5.

An intended scenario of the usage of GSOL is that if the user receives this
kind of information by applying GSOL, then the user tries to fix it by modify-
ing the rules or adding new rules. In this respect, reporting the non-confluence
information is also an important feature of GSOL.

Generally, the command gsol has two options: cri for critical pair checking
to show local confluence, and sn for termination checking. If no options are given
gsol checks both local confluence and termination. If the rules are locally conflu-
ent and terminating then they are confluent. The command gsol is implemented
as invoking GHC with the plugin SOL.Plugin.

(2) Cabal. GSOL can also check the confluence of files provided as a Cabal pack-
ages. We consider a sample package myarrows configuring the Control.Arrow
library. The file arrows.cabal should contain the configuration as:

library myarrows

exposed-modules: Control.Arrow

build-depends: base ^>=4.13.0.0, SOL

ghc-options: -fplugin=SOL.Plugin -fplugin-opt=SOL.Plugin:cri

which also requires the SOL package. Invoking the command cabal build, GSOL
is automatically called to check local confluence. One can also check termination
by -fplugin-opt=SOL.Plugin:sn.

(3) Web interface. To ease the checking with GSOL, we have also developed
a web interface, which is available at http://solweb.mydns.jp/ .
Several examples are already available. Choosing the file Control_Arrow.hs
from the pull-down menu, and “GHC rule” format and “WCR” buttons, the
user can get the result (cf. the screenshot, Fig. 7).

One can also check the Freyd category laws by choosing the file MyArrow.hs.

5 This can be joinable by adding a new rule forall f. arr(f) = f, which is valid
again only when the instance is a = (->).

GSOL: A Confluence Checker for Haskell Rewrite Rules 7

5 Summary and Future Work

In this paper, we presented a tool GSOL, a confluence checker for GHC. It checks
the confluence property for rewrite rules in a Haskell program by using SOL. We
implemented GSOL using the plugin mechanism of GHC and provided three
usages: (1) a stand-alone command, (2) Cabal, and (3) a Web interface. We
demonstrated confluence checking of the rewrite rules in the Arrow library.

As a future work, we will improve the type translation of Core rules to SOL to
deal with type constraints and type variables more properly. In Core rules, type
constraints in type signature in the original program become type parameters.
The current translation in GSOL drops the type parameters, which suffices for
critical pair checking, but makes termination checking weaker. We need to inves-
tigate to solve this issue. The framework of polymorphic rewrite rules [HAK20]
would be useful.

We believe that our development is also applicable to the termination and
confluence checking of type functions [CKJM05,CKJ05]. We plan to apply the
technology developed in this paper to them.

Recently, rewrite rules and checking their confluence have been an important
topic in dependently typed programming languages [Bla20,CTW21]. We also
plan to apply our technology to this field.

References

AHH+18. T. Aoto, M. Hamana, N. Hirokawa, A. Middeldorp, J. Nagele, N. Nishida,
K. Shintani, and H. Zankl. Confluence Competition 2018. In Proc. of FSCD
2018, volume 108 of LIPIcs, pages 32:1–32:5, 2018.

Bla20. F. Blanqui. Type safety of rewrite rules in dependent types. In Proc. of
FSCD 2020, volume 167 of LIPIcs, pages 13:1–13:14, 2020.

BN98. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

CKJ05. M. M. T. Chakravarty, G. Keller, and S. P. Jones. Associated type syn-
onyms. In Proc. of ICFP’05, pages 241–253, 2005.

CKJM05. M. M. T. Chakravarty, G. Keller, S. P. Jones, and S. Marlow. Associated
types with class. In Proc. of POPL’05, pages 1–13, 2005.

CoC20. Confluence competition official site, 2020.
http://project-coco.uibk.ac.at/2020/.

CTW21. J. Cockx, N. Tabareau, and T. Winterhalter. The taming of the rew: a
type theory with computational assumptions. Proc. ACM Program. Lang.,
5(POPL):1–29, 2021.

FH10. M. Fiore and C.-K. Hur. Second-order equational logic. In Proc. of CSL’10,
LNCS 6247, pages 320–335, 2010.

FM10. M. Fiore and O. Mahmoud. Second-order algebraic theories. In Proc. of
MFCS’10, LNCS 6281, pages 368–380, 2010.

GHC20. Compiler plugins, 2020.
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/extending_ghc.html.

HAK20. M. Hamana, T. Abe, and K. Kikuchi. Polymorphic computation systems:
Theory and practice of confluence with call-by-value. Science of Computer
Programming, 187(102322), 2020.

8 Yao Faustin Date and Makoto Hamana

Ham04. M. Hamana. Free Σ-monoids: A higher-order syntax with metavariables.
In Proc. of APLAS’04, LNCS 3302, pages 348–363, 2004.

Ham19. M. Hamana. How to prove decidability of equational theories with second-
order computation analyser SOL. Journal of Functional Programming,
29(e20), 2019.

HJ06. C. Heunen and B. Jacobs. Arrows, like monads, are monoids. In Proc. of
MFPS 22, ENTCS, volume 158, pages 219–236, 2006.

HL+20. B. Hagedorn, J. Lenfers, et al. Achieving high-performance the functional
way: A functional pearl on expressing high-performance optimizations as
rewrite strategies. Proc. ACM Program. Lang., 4(ICFP), 2020.

Hue80. G. Huet. Confluent reductions: Abstract properties and applications to
term rewriting systems. Journal of ACM, 27(4):797–821, 1980.

Hug00. J. Hughes. Generalising monads to arrows. Sci. Comput. Program., 37(1-
3):67–111, 2000.

JS95. S. P. Jones and A. Santos. Compilation by transformation in the Glasgow
Haskell Compiler. In Functional Programming, Glasgow 1994, pages 184–
204. Springer, 1995.

JS98. S. P. Jones and A. Santos. A transformation-based optimiser for haskell.
Science of computer programming, 32(1-3):3–47, 1998.

JTH01. S. P. Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting as a
practical optimisation technique in GHC. In Haskell Workshop 2001, 2001.

JWS96. S. P. Jones, P. Will, and A. Santos. Let-floating: moving bindings to give
faster programs. In Proceedings of the first ACM SIGPLAN international
conference on Functional programming, pages 1–12, 1996.

Mar10. S. Marlow. Haskell 2010 language report, 2010.
MJ12. S. Marlow and S. P. Jones. The Glasgow Haskell Compiler, volume 2. Lulu,

January 2012.
MMJK07. S. Martin, C. Manuel, S. P. Jones, and D. Kevin. System f with type

equality coercions. In Proc. of TLDI ’07, pages 53–66, 2007.
NFM17. J. Nagele, B. Felgenhauer, and A. Middeldorp. CSI: New evidence – a

progress report. In Proc. of CADE’17, LNCS (LNAI) 10395, pages 385–
397, 2017.

OKAT17. K. Onozawa, K. Kikuchi, T. Aoto, and Y. Toyama. ACPH: System descrip-
tion. In 6th Confluence Competition (CoCo 2017), 2017.

Pat01. R. Paterson. A new notation for arrows. In Proceedings of ICFP’07, pages
229–240, 2001.

PCMK12. A. Panyala, D. Chavarria-Miranda, and S. Krishnamoorthy. On the use of
term rewriting for performance optimization of legacy HPC applications.
In Proc. International Conference on Parallel Processing, pages 399–409,
September 2012.

PM+05. M. Püschel, J. M. F. Moura, et al. SPIRAL: code generation for DSP
transforms. Proc. IEEE, 93(2):232–275, 2005.

SFLD15. M. Steuwer, C. Fensch, S. Lindley, and C. Dubach. Generating performance
portable code using rewrite rules: From high-level functional expressions to
high-performance opencl code. In Proc. of ICFP’15, 2015.

Ter03. Terese. Term Rewriting Systems. Number 55 in Cambridge Tracts in The-
oretical Computer Science. Cambridge University Press, 2003.

GSOL: A Confluence Checker for Haskell Rewrite Rules 9

Appendix

In this appendix, we review second-order computation systems, which is the
foundation of SOL, and describe the translation

A Second-Order Computation Systems

We review a formal framework of second-order computation based on second-
order algebraic theories [FH10,FM10]. This framework has been used in [Ham19].

Types. We assume that A is a set of atomic types (e.g. Bool, Nat, etc.). We
also assume a set of type constructors together with arities n ∈ N, n ≥ 1. The
sets of molecular types T0 and types T are generated by the following rules:

b ∈ A
b ∈ T0

b1, . . . , bn ∈ T0

T n-ary type constructor
T (b1, . . . , bn) ∈ T0

a1, . . . , an, b ∈ T0

a1, . . . , an → b ∈ T

Remark A1 Molecular types work as “base types” in ordinary type theories.
But in our usage, we need “base types” which are constructed from “more basic”
types. Hence we first assume atomic types as the most atomic ones, and then
generate molecular types from them.

Terms. A signature Σ is a set of function symbols of the form

f : (a1 → b1), . . . , (am → bm) → c

where all ai, bi, c are mol types (thus any function symbol is of up to second-
order type). A sequence of types may be empty in the above definition. The
empty sequence is denoted by (), which may be omitted, e.g., b1, . . . , bm → c , or
() → c. The latter case is simply denoted by c. We assume two disjoint syntactic
classes of letters, called metavariables (written as capital letters M,N,K, . . .)
and variables (written usually x, y, . . .). The raw syntax is given as follows.

- Terms have the form t ::= xa | x.t | f(t1, . . . , tn).
- Meta-terms extend terms to s ::= xa | x.s | f(s1, . . . , sn) | M [s1, . . . , sn].

These forms are respectively variables, abstractions, and function terms, and the
last form is called a meta-application. We may write xa1

1 , . . . , xan
n . t (or xa.t)

for xa1
1 . · · · .xa1

n . t, and we assume ordinary α-equivalence for bound variables.
Hereafter, we often omit the superscript of variables xai

i . We also assume that
every bound variable and free variable are mutually disjoint in computation steps
to avoid α-renaming during computation. If computation rules do not satisfy
this property, we consider suitable variants of the rules by renaming free/bound
(meta)variables. A metavariable context Z is a sequence of (metavariable:type)-
pairs, and a context Γ is a sequence of (variable:mol type)-pairs. A judgment is
of the form

Z . Γ ` t : b.

10 Yao Faustin Date and Makoto Hamana

y : b ∈ Γ
Z . Γ ` y : b

(M : a1, . . . , am → b) ∈ Z

Z . Γ ` ti : ai (1 ≤ i ≤ m)
Z . Γ ` M [t1, . . . , tm] : b

f : (a1 → b1), · · · , (am → bm) → c ∈ Σ
Z . Γ, xi : ai ` ti : bi (1 ≤ i ≤ m)

Z . Γ ` f(xa1
1 .t1, . . . , x

am
m .tm) : c

Fig. 2. Typing rules of meta-terms

(Rule)

. Γ′, xi : ai ` si : bi (1 ≤ i ≤ k) θ = [M 7→ x.s]
(M1 : (a1 → b1), . . . ,Mk : (ak → bk) . ` ` ⇒ r : c) ∈ C

. Γ′ ` θ](`) ⇒C θ](r) : c

(Fun)

f : (a1 → b1), · · · , (ak → bk) → c ∈ Σ
. Γ, xi : ai ` ti ⇒C t′i : bi (some i s.t. 1 ≤ i ≤ k)

. Γ ` f(xa1
1 .t1, . . . , x

ai
i .ti . . . , xak

k .tk) ⇒C f(xa1
1 .t1, . . . , x

ai
i .t′i . . . , xak

k .tk) : c

Fig. 3. Second-order computation (one-step)

A meta-term t is called well-typed if Z . Γ ` t : c is derived by the typing
rules in Fig. 2 for some Z,Γ, c.

The notation t {x1 7→ s1, . . . , xn 7→ sn} denotes ordinary capture avoiding
substitution that replaces the variables with terms s1, . . . , sn.

Computation rules. For meta-terms Z . ` ` : b and Z . ` r : b using a
signature Σ, a computation rule is of the form Z . ` ` ⇒ r : b satisfying:

(i) ` is a function term and a Miller’s second-order pattern i.e., a meta-term
in which every occurrence of meta-application is of the form M [x1, . . . , xn],
where x1, . . . , xn are distinct bound variables.

(ii) all metavariables in r appear in `.

Note that ` and r are meta-terms without free variables, but may have free
metavariables. A computation system (CS) is a pair (Σ, C) of a signature
and a set C of computation rules consisting of Σ-meta-terms. We write s ⇒C t to
be one-step computation using C obtained by the inference system given in Fig.
3. We may omit some contexts and type information of a judgment, and simply
write it as Z . ` ⇒ r : b, ` ⇒C r, or ` ⇒ r if they are clear from the context. From
the viewpoint of pattern matching, (Rule) means that a computation system
uses the decidable second-order pattern matching for one-step computation (cf.
[Ham19, Sec.7.1]) not just syntactic matching. We regard ⇒C to be a binary
relation on terms.

Example A2 The simply-typed λ-terms on the set LamTy of simple types
generated by a set of base types BTy6 are modeled in our setting as follows. We
suppose type constructors L, Arr. The set of LamTy of all simple types for the
λ-calculus is the least set satisfying

LamTy = BTy ∪ {Arr(a, b) | a, b ∈ LamTy}.

6 This is the set of all base types of the object-level simply-typed λ-calculus we will
formulate, which should not be confused with a set A of atomic types of second-order
computation system (at the meta-level).

GSOL: A Confluence Checker for Haskell Rewrite Rules 11

e ::= Expression

| n Variable

| lit Literal

| e1 e2 Application

| λn.e Abstraction

| let binding in e Variable binding

| case e as n return τ of alti
i
Pattern match

| e B γ Cast

| e{tick} Internal note

| τ Type

| γ Coercion

Fig. 4. The syntax of GHC Core

[[n]] = xi
i.N [xi

i] if n has type τ i
i → τ and is a pattern variable

[[n]] = x if n is not a pattern variable and str(n) = x

[[lit]] = lit () if str(lit) = lit

[[((e e1) e2) . . . en]] = M [t1, . . . , tn] if e is a pattern variable and [[e]] = M and [[ei]] = ti

[[((e e1) e2) . . . en]] = f(t1, . . . , tn) if e is not a pattern variable and [[e]] = f and [[ei]] = ti

[[λ n.e]] = x.t if str(n) = x and [[e]] = t

[[e B γ]] = [[e]]

[[e{tick}]] = [[e]]

The function str gives the string representation.

Fig. 5. Translation from GHC Core expressions to SOL Terms

We use the mol type L(a) for encoding λ-terms of type a ∈ LamTy. The λ-terms
are given by a signature

Σstl =
{

lama,b : (L(a) → L(b)) → L(Arr(a, b))
appa,b : L(Arr(a, b)), L(a) → L(b)

| a, b ∈ LamTy
}

The β-reduction law is presented as

(beta) M : L(a) → L(b), N : L(a) . ` appa,b(lama,b(xa.M [x]), N) ⇒ M [N] : L(b)

Note that L(Arr(a, b)) is a mol type, but a → b is not a mol type.
We use the following notational convention throughout the paper. We will

present a signature by omitting mol type subscripts a, b. For example, simply
writing function symbols lam and app, we mean lama,b and appa,b in Σstl having
appropriate mol type subscripts a, b.

B From GHC Core Expressions to SOL Terms

Fig. 5 gives the translation function from GHC Core expressions to meta-terms.

12 Yao Faustin Date and Makoto Hamana

******** Computation rules ********
(left/arr) left(arr(x1.f[x1])) => arr(left(x1.f[x1]))
(right/arr) right(arr(x1.f[x1])) => arr(right(x1.f[x1]))
(sum/arr) arr(x1.f[x1]) +++ arr(x1.g[x1]) => arr(x1.f[x1] +++ x1.g[x1])
(fanin/arr) arr(x1.f[x1]) ||| arr(x1.g[x1]) => arr(x1.f[x1] ||| x1.g[x1])
(compose/left) left(f) . left(g) => left(f . g)
(compose/right) right(f) . right(g) => right(f . g)
(compose/arr) arr(x1.f[x1]) . arr(x1.g[x1]) => arr(x1.f[x1] . x1.g[x1])
(first/arr) first(arr(x1.f[x1])) => arr(first(x1.f[x1]))
(second/arr) second(arr(x1.f[x1])) => arr(second(x1.f[x1]))
(product/arr) arr(x1.f[x1]) *** arr(x1.g[x1]) => arr(x1.f[x1] *** x1.g[x1])
(fanout/arr) arr(x1.f[x1]) &&& arr(x1.g[x1]) => arr(x1.f[x1] &&& x1.g[x1])
(compose/first) first(f) . first(g) => first(f . g)
(compose/second) second(f) . second(g) => second(f . g)

1: Overlap (compose/left)-(left/arr)--- f|-> arr(x1’.f’[x1’]) -------------------------------
(compose/left) .(|left(f)|,left(g)) => left(f . g)
(left/arr) left(arr(x1’.f’[x1’])) => arr(left(x1’.f’[x1’]))

left(arr(x1’.f’[x1’])) . left(g)
left(arr(x1’.f’[x1’]) . g) <-(compose/left)-/\-(left/arr)-> arr(left(x1d1.f’[x1d1])) . left(g)

---> left(arr(x1’.f’[x1’]) . g) =#= arr(left(x1d1.f’[x1d1])) . left(g) <---
...
5: Overlap (compose/first)-(first/arr)--- f|-> arr(x1’.f’[x1’]) -----------------------------

(compose/first) .(|first(f)|,first(g)) => first(f . g)
(first/arr) first(arr(x1’.f’[x1’])) => arr(first(x1’.f’[x1’]))

first(arr(x1’.f’[x1’])) . first(g)
first(arr(x1’.f’[x1’]) . g) <-(compose/first)-/\-(first/arr)-> arr(first(x1d1.f’[x1d1])) . first(g)

---> first(arr(x1’.f’[x1’]) . g) =#= arr(first(x1d1.f’[x1d1])) . first(g) <---
6: Overlap (compose/first)-(first/arr)--- g|-> arr(x1’.f’[x1’]) -----------------------------

(compose/first) .(first(f),|first(g)|) => first(f . g)
(first/arr) first(arr(x1’.f’[x1’])) => arr(first(x1’.f’[x1’]))

first(f) . first(arr(x1’.f’[x1’]))
first(f . arr(x1’.f’[x1’])) <-(compose/first)-/\-(first/arr)-> first(f) . arr(first(x1d1.f’[x1d1]))

---> first(f . arr(x1’.f’[x1’])) =#= first(f) . arr(first(x1d1.f’[x1d1])) <---
...
#NON 8 joinable... (Total 8 CPs)

Fig. 6. GSOL output: Critical pair checking of rules in Control.Arrow

Fig. 7. GSOL web interface

